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Chapter 1

This document describes the International Reference Ionosphere 1990
(IRI-90). It is intended as a guide and handbook for the experienced as well
as the new IRI user. IRI models are established by a Joint working group of
the Committee on Space Research (COSPAR) and the International Union of

Radio Science (URSI). The composition of the COSPAR/URSI Working
Group on IRI is listed on the inside front cover.

Close tles exist to the URSI Working Group G.3 on Ionospheric Modeling (C.
M. Rush, U.S.A., Chairman) and G.4 on Ionospheric Informatics (B. W.
Reinisch, U.S.A., Chairman) and to the SCOSTEP (Scientific Committee on

Solar-Terrestrial Physics) Working Group on an Aeronomical Reference
Ionosphere (R. W. Schunk, U.S.A., Chairman).

IRI describes monthly averages of the electron density, electron
temperature, ion temperature, and ion composition in the altitude range
from 50 km to 1000 km for magnetically quiet conditions in the non-auroral

ionosphere.

Almost a decade has passed since the last comprehensive IRI handbook was
published: IRI-79 was described in Report UAG-82 of the World Data Center
A for Solar-Terrestrial Physics (Rawer et al., 1981). Meanwhile, the IRI
model has been significantly improved with ground and space data collected
in the seventies. Work and studies that led to several IRI updates were
presented and discussed at the annual IRI workshops and are published in a
series of issues of Advances in Space Research: Volume 2, No. 10, 1982;
Volume 4, No. 1, 1984; Volume 5, No. 7 and No. 10, 1985; Volume 7, No. 6,
1987; Volume 8, No. 4, 1988; Volume I0, No. 8 and No. 11, 1990. The list
of contents of these reports is reproduced in Chapter 5.

The IRI-90 handbook summarizes the most important improvements and
new developments. It includes a text part, a portion that explains the IRI
formulas and expressions, and finally a collection of figures generated with
IRI-90.



An interactive driver program for IRI-90 was developed at the National

Space Science Data Center (NSSDC) and is distributed (together with the
IRI-90 FORTRAN computer code and coefficients) on magnetic tape, on
diskette, and on line on the Space Physics Analysis Network (SPAN) and
connected computer networks. The diskette version can be executed on

IBM compatible personal computers (XT, AT), no math co-processor

required'.

Since 1988, IRI has also been part of NSSDC's Online Data and Information
Service (NODIS), which can be accessed from a remote SPAN node: (1) SET
HOST NSSDCA, (2) USERNAME=NODIS, (3) choose the GEOPHYSICAL

MODELS option, and (4) follow the prompts and menus. You can (i) run the

program, (ii) read the documentation, or (iii) get instructions on how to
copy the IRI code and coefficients to your account.

IRI-90 on tape or diskette can be ordered from m

* For U.S. researchers:

National Space Science Data Center
Code 933.4
Goddard Space Flight Center
Greenbelt, Maryland 20771
Telephone: (301) 286-6695
Telex: 89675 NASCOM GBLT
TWX: 7108289716

FAX: (301) 286-4952
SPAN: NSSDCA::REQUEST

• For researchers residing outside the U.S.:

World Data Center A for Rockets and Satellites

Code 930.2
(Address same as above.)

Publication of this document was made possible through the support and

encouragement of Joseph H. King and through the dedicated and untiring
efforts of Miranda Knowles, Lynda Williams, and Maria Waiters.

* With co-processor, the execution speed increases by a factor of ten. Recomptlatlon is necessary ff the
user has a system with co-processor and wants to take advantage of the faster speed.
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2.1 History of the International Reference Ionosphere

K. Rawer

Herrenstr. 43, 7806 March

Federal Republic of Germany

L. Bossy
UniversitY, Catolique de Louvain
174, avenue W. Churchill, 1180 Bruxelles
Belgium

Radio-observatlons of the very first satellites yielded some very important
results concerning the upper atmosphere. Orbital period determinations via
radio-location showed that temperature and density variations in the upper
atmosphere are much greater than expected. Therefore, the newly-founded
Committee on Space Research (COSPAR) decided that a set of empirically
based tables describing these findings should be established. This task was
considered of such high importance that a commission of specialists was
established to carry it out. This group in 1961 presented its findings under
the name of COSPAR International Reference Atmosphere (CIRA). The
collection was widely used by the scientific community. Taking account of
the increasing amount of measured data followed up by an increasing
number of theoretical approaches, the continuous work of the CIRA Task
Group culminated in the release of three more CIRAs in 1965, 1972, and
1986.

Realizing the success of CIRA, S. Bowhill proposed a few years later to
establish a comparable reference for the ionized constituents of the
atmosphere, to be called International Reference Ionosphere. According to
the original terms of reference, it should contain empirically based tables
describing monthly median vertical profiles of the main parameters of the
ionospheric plasma. Like CIRA, IRI should be usable as a standard reference
for the design of experiments, the estimation of environmental and other

effects, for checking theories, etc. The profiles should be provided for
suitably chosen locations, hours, seasons, and levels of solar activity. In
contrast to theoretical models, the IRI should combine approved
experimental results so as to be a useful reference with no dependence on
theoretical assumptions.

To take care of this new task, COSPAR in 1968 established the "Task Group
on IRI" and nominated K. Rawer for chairman. This group was given the
task of promoting and coordinating the i_ternational efforts toward the goal
described in the above terms of reference. In 1969, the International Union

of Radio Science (URSI) decided to concur with COSPAR in the project. A
preliminary set of tables (for two locations, noon and midnight, three
seasons, and two levels of solar activity) was presented as an example to the
URSI General Assembly 1975 in Lima, Peru.

5

PRECEDING PAGE BLA_:_K NOT FILMED



The Task Group made two decisions at the very beginning of its work:

(1) Since most users have access to computer facilities, the results should
be presented as a computer code rather than as a set of printed tables.
Tables and figures could then be produced with this code.

(2) The peak of the ionosphere should not be modeled independently but
should be determined by an existing computer code published in 1967
by the Comite Consultatif International des Radiocommunications
(CCIR).

The CCIR code is based on a large set of measurements made by ionosonde
technique at more than a hundred stations worldwide. This data base,
however, contains large gaps over the oceans. In order to fill these gaps,
Jones and Gallet (1965) had introduced a particular, coordinate-dependent,
interpolation system that was bound to geographic coordinates. To give a
more coherent picture, the CCIR version applies another, special latitudinal
coordinate (MODIP) that was proposed by Rawer (1963).

The terms of reference asked for four parameters to be represented in IRI,
namely, electron density, electron and ion temperature, and (positive) ion
densities. In order to reach consistency with the independently obtained
electron densities, the ion densities should be given as relative, not absolute,
values. Consistency was also asked for between the plasma temperatures
and the CIRA neutral temperature.

As a general philosophy a data set, before being introduced into the system,
had to be critically evaluated by the experts. Comparing results of different
techniques was one way of checking data reliability, a powerful one as was
found out. In fact, critical comparison of different measuring methods
turned out to become a major IRI task. For example, a special meeting on
"Methods of Measurements and Results of Lower Ionosphere Structures" was
initiated by the group and was held in 1973 at Konstanz, Federal Republic of
Germany. With the guidelines established during the meeting in mind and
in broad intemational cooperation, a great effort was started to gather
relevant data from different techniques.

At the onset of IRI work, it had been expected that the amount of accessible
and reliable data would be rather large for electron densities, much smaller
for temperatures, and rather poor for ion composition. In general, this was
found to be the case. However, even the electron density profile data

showed rather important and unexpected gaps. In spite of the existence of
an enormous amount of evaluated ionogram parameters, true height profiles
were only available for a small number of stations providing by no means a
worldwide coverage. The inversion technique, needed to obtain true height
profiles, had been applied only at very few places at temperate latitude.
Even there, some uncertainty remained because of the E-F-valley problem
(Gulyaeva et al., 1990). Several stations run by U.S. institutions had
produced so-called "composite profiles" obtained with an artificial "median

6



ionogram" (established month by month and hour by hour). Though the
reliability of these results might be questionable, they were the only available
input at lower latitudes. Also, the polar caps were de facto excluded because
of the lack of specific information and because of the great variability
encountered in this region. It was felt that under the extreme conditions in
the polar caps the CCIR maps, which are based on monthly median station
data, are unable to produce a representative picture.

As for the topside, mainly two sources of information were available at the
time, namely, incoherent scatter observations (unfortunately at few stations
only) and topside sounder profiles. In situ measured plasma densities could
be used only for checking purposes. A very large number of topside
ionograms taken by the two Alouette satellites had been inverted to density
profiles. Unfortunately, an inquiry showed that these were incomplete
because the peak electron density value was regularly missing. Thus,
regrettably, the many profiles in the archives were not usable for the IRI
purpose. Later Bent and Llewellyn (1973) established an empirical model
description based mainly on about 10,000 topside ionograms obtained by
Alouette above North and South America. While the influences of solar
activity and F-peak density are given by simple formulas in this model, the
latitudinal variation is described discontinuously considering only three
geographic ranges. S. K. Ramakrishnan produced a continuous description
for the Llewellyn and Bent (1973) model. There remained, however, serious
problems in the region around the geomagnetic equator where the original
description does not admit an explicit dependence on latitude (Bilitza,
1985a, 1986).

For the height of the F2-peak, hmF2, reliable data are obtained by the
incoherent scatter technique; however, only a rather small number of
stations operate worldwide. Fortunately, in view of propagational
applications, ionosonde stations had regularly determined a parameter,
M(3000)F2, which has some relation with hmF2. A large and worldwide
thesaurus for this parameter was readily available in the form of the CCIR

numerical maps similar to the CCIR peak density maps. From a compilation
of ionogram data (under some simplifying assumptions) Shimazaki (1955)
had found a linear relationship between the peak height hmF2 and
M(3000)F2, a relationship that was later improved by different authors
(Bradley and Dudeney, 1973; Bilitza et al., 1979). The improved formulas
take account of additional parameters which influence the hmF2-M(3OOO)F2
relationship, in particular refraction in the E-region. With such relations
the M(3000)F2 maps could be transformed into hmF2 maps. The results
obtained by incoherent scatter had been taken into account for the

improvement introduced by Bilitza et al. (1979).

Particular problems were encountered in comparisons of measurements in
the lowest ionosphere (below 100 km) that had been obtained with different

techniques. The data were so widely different that a special symposium was
held (see above) in order to reach an agreement about general guidelines
(Rawer, 1974). It was stated that in situ measurements, when combined

7



with radio propagation measurements between ground and rocket, would be
used as the primary input. A compilation of acceptable D-region rocket data
was made by Mechfly and Bilitza (1974). For the nighttime lower E-region

and valley two differing compilations were available from Maeda (1969, 1970,
1971, 1972) and Soboleva (1972, 1973). Comparing both with Schumann

resonances, H. G. Booker gave a strong vote in favor of the Maeda model.

The full (vertical) profile of plasma density was described by a set of
mathematical expressions, each valid in a certain height range. This rather

complex system allowed a correct representation of the most important
inputs, like the peak densities of the main layers. On the other hand, it was
not well suited for "full wave" computations. For such computations (at

extremely low frequencies), Booker (1977) proposed the use of fully analytic
functions of a type that P. S. Epstein had defined in the thirties. His
proposal was, in fact, used in the topside description but for good reasons
could not be realized for the full profile at that time.

At least by day the electron temperature can be much higher than that of the
ions, the latter being also less variable. Ion temperature data observed with
the retarding potential analyzer technique by Dumbs et al. (1979) were
accepted as reliable inputs together with ground-based measurements made
at a few places by the incoherent scatter technique. The in situ results were
used to derive the latitudinal variation between the incoherent scatter
stations. The difference to the lower CIRA neutral temperature values

becomes quite appreciable above 400 km. Near the 100 km level agreement
of both temperatures (as requested by COSPAR) was arranged for within the

ion temperature formula.

The same data sources were used for the electron temperatures. The

latitudinal variation was mainly taken from a compilation of data measured
aboard the AEROS satellites (Spenner and Plugge, 1979). Later Bilitza et al.
(1985) improved the temperature model by introducing Langmuir probe
data compiled by Brace and Theis (1981) from the AE-C and ISIS 1 and 2
satellite missions. It is well documented that the electron temperature and

density are closely anti-correlated in the daytime ionosphere (e.g., Bilitza,
1975; Brace and Theis, 1978). Therefore, in the formulas used at first, the
electron temperature was coupled with the actual electron density. Later it
was found that for monthly medians a correlation between the temperature
and density profile was not meaningful. Density and temperature profiles
were, therefore, established independently from the relevant monthly
median data. In case, however, actual density profiles for a specific time and
location are at hand, it is recommended to apply a correction to the median

temperature profile via an empirical (inverse) relation specified in IRI
(Bilitza et al., 1985).

The data base for (positive) ion composition was rather poor at the time. Most
of the published rocket or satellite data had been given as absolute densities
and did not provide the total plasma density needed to determine the relative
ion composition. Further, a large set of simultaneous measurements with mass
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spectrometers and a retarding potential analyzer (RPA) aboard the AEROS
satellites had shown that while the spectral resolution is much better with

mass spectrometers, the intensity indications are less reliable with the more

involved spectrometer systems than with the simpler retarding potential
method. The RPA data could be reasonably well evaluated in three groups: (1)

hydrogen and helium ions, (2) oxygen and nitrogen (atomic) ions, and (3) the
group of molecular ions: 02 ÷, N2 ÷, and NO +. Satellite RPA measurements

(Dumbs et al., 1979) were used for the model at heights above 220 km. A few

ion mass spectrometer (IMS) data (Taylor, 1972) were also considered in
building the model. Between 100 km and 250 km the model relies on rocket

IMS data compiled by Danilov and Semenov (1978), including American,

Russian, and a few European measurements.

The most difficult range to describe is below 100 km. Positive cluster ions

appear below about 92 km and are the most abundant species below about

84 km. There were only three groups in the world that had developed

techniques (with cooled spectrometers) as needed at heights at which

collisions play an important role. It was not possible to establish a profile in

agreement with all observations because cluster ions are often destroyed in

the spectrometer itself (by the electric fields that are applied in the

measuring system). After some discussion, data obtained with a particularly
designed instrument (Kopp et al., 1978; Kopp, 1984) were taken as

reference. Only the total sum of all clusters was given since the number of

individual species is large and transitions between species is frequent.

A similar situation was encountered with negative ions that occur only at
altitudes below about 80 km. These are also clusters. Only one group had
made measurements in this difficult height range (Arnold et al., 1971).

Their average daytime profile was incorporated into IRI.

After the first IRI was released in 1978 (Rawer et al., 1978a), it was

critically tested with a wide variety of data. This testing period lasted about

one decade. Since 1982, COSPAR in cooperation with URSI has organized
yearly workshop meetings to discuss and improve the model (see Table 1).

The computer code has been changed step by step and new features

introduced as they have become available. COSPAR has published the papers
presented at these meetings in its periodical, Advances in Space Research.

The proceedings of seven of these workshops have appeared in the years
from 1982 through 1990 (see Table 1). More than 300 scientists are listed

as authors of more than 230 individual papers filling a total of 1,458 pages.
The tables of contents of these reports are listed in Chapter 5.

Another result of these discussions is worth noting: For quite a number of

unresolved questions, the existing data base was insufficient to give a well
founded answer. As a reaction, special data analysis and collection efforts
were undertaken in different countries. For example, the AEROS satellite
team decided to organize the data reduction and evaluation scheme in such

a way that a worldwide picture of electron and ion temperatures, and ion
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Table 1: Workshop Meetings for Discussion of IRI

Year

1971
1973
1974
1982
1983
1984
1985
1986
1987

1988

Place

Seattle (USA)
Konstanz (FRG)
Sao Paulo (Brazil)
Ottawa (Canada)
Stara Zagora (Bulgaria)
Graz (Austna)
Louvain (Belgium)
Toulouse (France)
Novgorod (USSR)
Espoo (Finland)
Ahinedon (UK)

Published
Year Papers

1972 21
1974 52
1975 5
1982 14
1984 24
1985 18
1985 23

,r

1987 22
1988 53
1990 24
1990 17

Publication

Space Res. Xll
See Rawer (1974)
Space Res. XV
Adv. in Space Res. 2f # 10
Adv. in Space Res. 4 r# 1
Adv. in Space Res. 5 r # 7
Adv. in Space Res. 5j # 10
Adv. in Space Res. 7w# 6
Adv. in Space Res. 8, # 4
Adv. in Space Res. 10 r # 8
Adv. in Space Res. 1O, #11

Pages

1229-1335
1-460

295-334
181-257

1-169
1-112
1-130
1-127
1-251
1-132

composition could be obtained in a readily usable form. In the U.S.S.R. and
in India several rocket campaigns were conducted to get a sound data base

for an improved ion composition vs. height formula.

Not all steps taken in the course of discussions were found to be favorable.
While originally an interrelationship between electron density and
temperature was implemented, it was found that, in spite of clear
experimental evidence for individual cases, this is not justified when dealing
with monthly medians. Another unfortunate decision (in response to a
request by the competent URSI Commission) was made with the temporary
introduction of Chiu's (1975) simplified peak description as a second choice
besides the numerical CCIR maps. This action was withdrawn later when it

became apparent that this (regionally helpful) description is not acceptable

in many parts of the world.

In their 1978 paper, Rawer et al. (1978b) noted a few open problems:
checking by propagation experiments, comparison of elf propagation with
full wave computations using IRI, comparison with ionospheric absorption
measurements, extension toward greater heights, improved data base for ion

composition, in particular at lower and at very great heights, and improved
data base in the low latitude belt. Some of these problems were resolved;
meanwhile, others are still pending.
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2.2 Electron Content Measurements and IRI

Reinhart Leitinger

Instltut ffir Meteorologie und Geophysik
University of Graz, 8010 Graz, Austria

Abstract--The use of ionospheric electron content data from Differential
Doppler measurements for comparison with the Intemational Reference
Ionosphere (IRI) is demonstrated. A data base of European electron content
data exists in Graz and was used for the comparison. The data were
obtained at several receiving stations from the signals of the Navy Navigation
Satellites (NNSS). Their nearly polar and nearly circular orbit is at a
nominal height of 1000 km. The data gained at Lindau/Harz, Federal
Republic of Germany, were used, with calibration by means of latitudinal
profiles of electron content observed from Graz, Austria, if available. The
comparison was based on monthly medians of electron content for latitudes
60 °, 55 °, 50 °, and 45 ° north and local time intervals of two to three hours.

Two levels of solar activity were considered: 0 < R < 40 (low solar activity--
LSA) and 130 < R < 170 (high solar activity--HSA). Apart from electron
content, two other integral parameters that can be derived from the IRI are

discussed: (1) the equivalent slab thickness T and (2) an ionospheric shape

factor 7/. Both parameters are important for the assessment of

transionospherlc propagation errors.

2.2.1 Measurement Technique and Data

Electron content and other integral parameters for the ionosphere from the
ground to ceiling heights around 1000 km are important both for
geophysical and for engineering applications. Since actual measured values

are not always available, one has to rely on models for many purposes. One
of the areas of great practical importance is the prediction and the

assessment of transionospheric propagation errors as needed, for example,
space geodesy, radio astronomy, time dissemination via satellites, satellite
and space probe navigation. Only a few papers have been published that deal

with the comparison of measured electron content with the IRI (e.g.,
McNamara and Wilkinson, 1983; McNamara, 1985; Bilitza et al., 1988).

Almost all published comparisons were based on electron content gained by
means of the Faraday effect on the signals of geostationary satellites.

Modern measurement techniques for electron content are based on

propagation effects observed on signals transmitted from satellites to ground
stations. Several signal components are needed to separate plasma effects
from geometric and neutral gas effects. The most important experimental
methods are listed in Table 1 together with the signal components used.
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Table 1: Measurement Techniques

Technique

Alternate Name

Signal
Components

Frequency Bands

Satellites

Carrier
Frequencies
fl, fi/MHz

Reference
Frequency/MHz

Sensitivity
A _/t_ TE Ctt
[o/(101Sm-2)]

Faraday Effect

Left- and right-hand
circular components of
one carder

VHF

Beacon of geostationary
communications satellites

136

9.12

Differential Doppler Effect

Carder Phase Difference

Two coherent carders with
large difference in
frequencies

VHF/UHF, L-Band

Navy Navigation Satellite
System (NNSS), Global
PositionincjSystem (GPS)

Group Delay

Modulation Phase
Difference

Identical and coherent
modulations on two
carders

c:" VHF/UHF, L-Band
m:t 0.1...10MHz

ATS 6 Radio Beacon
GPS

NNSS: 150, 400
GPS: 1227, 1575

NNSS: 50
GPS: 1227

NNSS: 9.24
GPS: 15.5

ATS 6:140,360
GPS: 1227, 1575

ATS 6:2.11
GPS: 0.13

c - carriers.
t m = modulation.
tt A4_= phasedifference;ATEC = electron contentdifference.

Using geometric optics, the general expression for the received signal phase is

2 fR= c [. nds+2_ft
T

where f is the transmitted frequency, c the free space velocity of light, n
the refractive index, ds the ray path element, t the time, and the integral is
taken from the phase center of the transmitting antenna at T to that of the

receiving antenna at R.

All three techniques record propagation effects in the form of phase
differences: (1) the Faraday effect as the phase difference between the two

circularly polarized components of a suitable satellite signal, (2) the
DEferential Doppler effect as the phase difference between two coherently
transmitted signal carriers transformed to a common reference frequency

by phase division, and (3) the Group Delay effect as the difference of
modulation phase on two carriers. In each case, the phase difference
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contains plasma effects only. The Faraday effect is approximately
proportional to the integral over N BL, where N is the electron density and
BL the component of the geomagnetic field strength along the ray path TR;

the other two effects are approximately proportional to the integral over N
only. For signal frequencies greater than 100 MHz these approximations are
very good and higher order effects can be neglected. In the case of the
Faraday effect, the integral is evaluated assuming a constant BLValue for the

whole ray path. One usually takes the BL value from a fixed height. For
geostationary satellites errors smaller than 5% are obtained with a fixed
height of 420 km provided that the result is considered to be the electron

content from the ground to a limiting height of 2000 km (Titheridge,
1972). The contribution of the electrons above this limiting height is
negligible because of the decrease of BL and of N with height.

Accordingly, propagation effects on signals transmitted from satellites are in
a first order approximation proportional to the electron content between
satellite and receiver. This slant electron content can be transformed

(approximately) into the vertical electron content at a path height hi, by

multiplying it with the cosine of the angle between ray path and vertical
direction (zenith) at hi. It is common to take a hi of 350 km or 400 km.

Model calculations have shown that h_ = hmF2 + 50 km is a better choice

with hmF2 being the height of the F-layer peak. Ionospheric electron
content is often called total electron content (TEC) to distinguish it from
sub-peak electron content or other partial contents.

If the propagation effect gives a phase difference greater than 2n, the data
are ambiguous and one has to use additional information to resolve this 2nn-

ambiguity. In many cases, the transmitted phase and/or the phase shifts in
the receiving equipment are not known, which means that one has to add a

phase constant (an initial value) that can assume any value (not only
multiples of 2n). Provided that transmitter and receiver are stable in

respect to phase shifts, the initial value remains constant as long as there is
temporal continuity in the received data. Therefore, the initial value

problem is in general less severe for geostationary satellites than for orbiting
satellites. In the latter case one has to find a new initial value for each pass
of a satellite. For geostatlonary satellites the initial value acts as an additive
constant because the projection from slant content to vertical content is

done with a constant factor. During the pass of an orbiting satellite the
projection factor changes and, therefore, the initial value has a changing
influence on electron content. For orbiting satellites only those electron

content differences gained for satellite locations with equal zenith angle are
free from the initial value influence. For low and midlatitude stations and for

satellites in nearly circular polar orbits, equal zenith angle is approximately
equivalent to equal latitude differences to the latitude of the receiving
station.

Ionospheric electron content depends on time and on location. It is not
possible to gain both dependences with one receiving station and with one

satellite: The beacons on board geostationary satellites make it possible to
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derive the time dependence of electron content along a fixed ray path (or
vertical content for a fixed location). Satellites in nearly circular and nearly

polar orbits in heights around 1000 km (e.g., the Navy Navigation Satellites)
give the latitude dependence of electron content for essentially constant
time (the typical duration of a high elevation NNSS pass is 20 minutes).
Satellites in high orbits (e.g., the satellites of the Global Positioning System -
GPS - in 20,000 km height) mix temporal and spatial dependence of

electron content.

The Differential Doppler data used in this study were gained by means of the

signals of the NNSS. The receiving station was Lindau/Harz, Federal
Republic of Germany (51.62 ° north, 10.09 ° east). For a part of the satellite
passes, the initial phase value was determined by the two stations method
(Leitinger et al., 1975) with data from the receiving station Graz, Austria
(47.08 ° north, 15.45 ° east). For the remainder the initial phase value was
determined using assumptions about the latitudinal structure of the

ionosphere (single station method, see Leitinger and Putz, 1978). The
latitude dependence of electron content was gained with a fixed mean
ionospheric height of 400 km, using the geographic coordinates of the point
in this height on the straight line from the receiver to the satellite.

Electron content was gained from the IRI by means of numerical integration
from 60 km to 1000 km using a step-size of 10km. The comparison is
based on monthly medians of electron content for the latitudes 60 ° north,
55 ° north, 50 ° north, and 45 ° north. Because of the irregular distribution of

NNSS passes, the day is divided into nine three-hour intervals starting at
midnight. The monthly medians were calculated in each interval both for
low solar activity (LSA) and for high solar activity (HSA). The criterion for

low solar activity was a monthly mean solar sunspot number R not greater
than 40 (nominal value R = 20), and for high solar activity an R between 130
and 170 (nominal value 150). For LSA all months from 1975 to 1976 were
included; for HSA a selection of months was taken from the years 1978

through 1982 (Feichter et al., 1988, 1989).

2.2.2 Comparison of Monthly Medians

The comparison of electron content measurements with IRI data is
demonstrated for a latitude of 50 ° north, 15 ° east, a typical midlatitude

location both geographically and geomagnetically. The results of the direct

comparison of monthly medians is shown in Figures 1 to 3. Examples for
the seasonal variation are displayed in Figure 1 for the time intervals 06-09
LT and 11-13 LT, both for low and high solar activity. Because of the quick

change of electron content in the morning time interval, the comparison for
06-09 LT is not too conclusive, but it can be clearly seen that the IRI gives
an October maximum both for LSA and for HSA not present in the NNSS
results for LSA, For noontime there are considerable differences in winter

(Figure lc): The IRI data are too high when compared with the NNSS data.

During summer good agreement is found for HSA (Figure ld).
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Fig. 1. Comparison of the annual variation of electron content (TEC) from IRI with that from NNSS
Differential Doppler measurements in units of 101Sm-2:

a) (top left) Low solar activity, morning
c) (bottom left) Low solar activity, noon

b) (top right) High solar activity, morning
d) (bottom right) High solar activity, noon
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Fig. 2. Comparison of the diurnal variation of electron content (TEC) from IRI with that from NNSS
Differential Doppler measurements in units of 101Srn-2:

a) (top left) Low solar activity, January
c) (bottom left) Low solar activity, March

b) (top right) High solar activity,January
d) (bottom right)High solar activity, March
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Fig. 3. Comparison of the diurnal variation of electron content (TEC) from IRI with that from NNSS
Differential Doppler measurements in units of 1015m-2:

a) (top left) Low solar activity, July
c) (bottom left) Low solar activity, October

b) (top fight) High solar activity, July
d) (bottom fight) High solar activity, October
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Comparing the shape of the annual variations around noon reveals that for
HSA the absolute IRI maximum occurs in November whereas the NNSS

maximum is seen in October (Figure ld). Since the IRI F2-peak exhibits the
same November maximum, it is clear that this is a feature of the CCIR
coefficients.

The diurnal curves exhibit the strongest differences in winter for LSA

(Figure 2a). The shape of the winter curves is, however, similar. The
diurnal curves for summer have different shapes (Figures 3a and b): IRI
exhibits a double-peaked diurnal curve from May through August for LSA and
from June through July for HSA. For low solar activity the evening maximum
which occurs around 20 LT is even higher than the morning maximum
occurring around 10 LT (Figure 3a).

2.2.3 Electron Content Differences

Since the initial value could add a bias to the NNSS data, it is advisable to

compare electron content differences for suitably chosen latitudes. We have
chosen the difference between the electron contents at 45 ° north and 60 °
north, which is comparatively free of latitudinal biases. The statistical

properties of daytime (10-17 LT) electron content differences from NNSS
observations are shown in Figure 4 in the form of "boxplots" (Kleiner and
Graedel, 1980) with the range of IRI data added to the display. For LSA the
IRI data are clearly too high, but for HSA they are too small. From October
through February the TEC differences from IRI are even predominantly
negative, a finding that contradicts the widespread experience that
midlatitude TEC increases with decreasing latitude.

2.2.4 Equivalent Slab Thickness • and Shape Factor tl

Since electron content can be separated into peak electron density times

equivalent slab thickness • and since IRI takes peak electron densities from
the CCIR (1967) model coefficients, it makes sense to investigate the

equivalent slab thickness • as predicted by IRI. Figure 5 shows the annual
variation of the IRI equivalent slab thickness for different latitudes at noon
and midnight and during low and high solar activity. For high solar activity a
comparison was made with experimental data gained by the combination of
electron content from the Faraday effect on the VHF signal of the

geostationary satellite SIRIO (receiving station Graz, Austria, with the
ionospheric point at 400 km having the coordinates 42.0 ° north, 10.2 ° east)
with peak electron density from the ionograms of Rome, Italy (41.8 ° north,
12.5 ° east) (Skedel, 1989). The comparison was done with monthly
medians for the years 1981 and 1982. The results can be summarized as
follows:
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Fig. 4. Monthly boxplots for the difference of electron content at 45" north and 60" north from NNSS
observations during daytime (10-17 LT) in units of 101sin-2. Left hand panel: low solar activity (LSA, R =
20). Right hand panel: high solar activity (HSA, R = 150). Boxes: from quartile to quartile, divided by the
median; vertical lines to the maximum and to the minimum, respectively. Short horizontal dashes:
uppermost and lowest deciles and confidence limits (5% error probability) of the median. The number of
data per month is displayed at the bottom. At the left of each box, one finds the range of IRI results for the
local time interval 10-17 LT (x --x).

00 LT: The annual curve of IRI-T is below the "observed" curve.

1981 a decrease of IRI-_ by 50 km would improve the situation
considerably.

For

• 06 LT: The IRI annual curve is still too high, but the experimental slab
thickness is not very reliable in winter when sunrise is near 06 LT.

• 12 LT: In summer IRI-T fits the observed I: comparatively well, but in
winter the IRI values are too high by up to 70 km.

18 LT: The IRI data for 1982 were larger than the observed values

throughout. For 1981 this is true for all months except April and June,
which showed comparatively good agreement. The differences are
highest in winter.

The IRI slab thickness shows a peculiar behavior near the geomagnetic
equator (Figure 5a) and near the crest of the equatorial anomaly (Figure 5b).
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Fig. 5. Annual Variation of equivalent slab thickness from IRI in km for different geographic latitudes and
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a) (top left) Vicinity of the geomagnetic equator (11" north)
b) (top dght) Vicinity of the crest of the equatorial anomaly (20" north)
c) (bottom left) Latitude 42" north (comparison with data Faraday Graz--ionosonde Rome)
d) (bottom right) Latitude 50" north
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The equator z is higher for LSA than for HSA and the equator slab thickness

is higher than the crest slab thickness (Flgures 5a and b). The crest I; and

the equator "c for HSA exhibit almost no seasonal dependence. There is
almost no solar activity dependence of slab thickness near the crest of the

equatorial anomaly (Figure 5b). A decrease of solar activity dependence of

IRI-I: with decreasing latitude is seen in midlatitudes, too (Figures 5c and d).

Since the contributions to slab thickness from the electrons above the F-layer
peak are much higher than the contributions from the sub-peak electrons, it
is clear that the IRI deficiencies in the slab thickness behavior stem from the
Bent model (Llewellyn and Bent, 1973). This impression is enhanced when

one studies the behavior of other parameters of the electron density profile.
One such parameter is the so-called shape factor, a quantity needed for the
assessment of higher order range errors, which play an important role in

space geodesy and similar applications of the transionospheric propagation of

radio waves (Leitinger and Putz, 1988). The shape factor 71is defined by

1 hs(N_2

IRI gives a shape factor that is nearly independent of latitude and time and

is about 0.616 for LSA (R = 20) and 0.638 for HSA (R = 145). Since 71

reflects strongly the electron density profile above the peak, this behavior
means that the Bent model on which the IRI is based in this region has a

shape that is practically independent of latitude and time and changes only
slightly with solar activity. Recently, Buonsanto (1989) has compared
electron density profiles measured by the incoherent scatter radar at

Millstone Hill, Massachusetts, with IRI profiles. The comparison shows that
even under geomagnetically quiet conditions the measured profiles can
differ considerably from the IRI profiles, especially above the peak. Table 2

gives the electron content TEC, slab thickness T, and shape factor 7/
obtained by numerical integration of the values read from Buonsanto's
figures.

Table 2: Integral Parameters from Profiles Measured at
Mlllstone Hill (46.2" N, 71.5" W)

Low Solar Activity High Solar Activity

Season LT Date TEC % 11 Date TEC "£
HH YYMMDD 101Sm-2 km YYMMDD 101Sm-2 km

Summer 00 850813 16.8 172 0.576 800608 156.9 258 0.631
Summer 12 850813 72.8 269 0.637 800608 283.5 328 0.586
Winter 00 860209 13.6 225 0.630 801220 67.3 277 0.625
Winter 12 860209 99.9 192 0.561 801220 432.7 211 0.581
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2.3 Morphology of Electron Temperature Anisotropy in the
F-Region

Koh-lchiro Oyama
Institute of Space and Astronautical Science

3-1-1, Yoshinodai, Sagamihara, Kanagawa, 229, Japan

Abstract--Electron temperature was measured by means of planar probes
that were installed on Japan's ninth polar-orbiting satellite OHZORA. The

measurements were carried out at the same time both along (Tx) and vertical
(T_) to the geomagnetic field and showed the difference between these two

temperatures. Tm is more often higher than T_ during nighttime. In the

daytime Tu is sometimes lower than T_ and sometimes higher. Dependence

of the anisotropy upon geomagnetic latitude, local time, season, and height
is investigated.

2.3.1 Instrument and Data

Japan's ninth scientific satellite OHZORA was launched on February 14,
1984, to study, besides other mission goals, plasma phenomena in polar and
equatorial regions. The polar orbiting satellite measured in the altitude

range from 350 km to 900 km. Electron temperature probes were installed
together with other plasma instruments, such as particle analyzers, a wave
receiver, an electron density probe, and a topside sounder. One of the

objectives of the electron temperature measurements was the study of the
anisotropy of the electron temperature. Results of this investigation are
presented here.

Four planar probes (diameter: 120 mm) were put at the very end of the four
solar cell paddles, as shown in Figure 1. Three probes were dedicated to
electron temperature measurements, and one was used as a i_Lxed bias

Langmuir probe to measure the relative electron density. During most of the

time, the satellite was non-spun, but occasionally it was spun very slowly.
The maximum spin rate in the past has been 0.6 rpm. Usually, the spin rate
was 0.2 rpm or less. The satellite spin axis was controlled to point towards
the sun with an accuracy better than 1° .

The principle of the instrument and the data reduction method was

described by Hirao and Oyama (1970) and Oyama et al. (1985). The probes
whose sensor plates are vertical to the geomagnetic field lines ($3 and $7 in

Figure 1) measure the parallel electron temperature Tin, and the probes
whose sensor plates are parallel to the geomagnetic field lines (S 1 and $5 in
Figure 1) measure the vertical electron temperature T_. For this statistical
study only those data points were used for which at least one of the sensors
was aligned with the magnetic field to within ± 20 °. The data were also
carefully checked to remove measurements carried out in disturbed areas in

the satellite wake or in the thick sheath which may be caused by the strong

23



REVO. 8355 22:12 UT

X GAX
$1

• Z

$3

¥

$5

T,, 2180K T_ 1350K

Fig. 1. Satellite OHZORA and location of the four temperature probes; sensors $1, $3, and $5 are used
as the electron temperature probes while the sensor $7 measures ion and electron currents.
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satellite charging. Altogether, 505 data points are used from observations
carried out between February 1984 and December 1985.

2.3.2 Results for Individual Orbits

Figure 2 shows results which were obtained with sensors $1 and $3 during
the satellite orbit 947; the two sensors are orthogonal to each other. The
upper panel shows the angles between the geomagnetic field direction and
the three satellite-centered axes X, Y, and Z (see Figure 1). To simplify
matters, we will call these angles X, Y, and Z as indicated in Figure 2. Also
shown (thin line) is the floating potential, which is measured by means of
one of the sensor electrodes with respect to the satellite potential. The
second panel from the top shows the ratio of electron temperatures
obtained by the two sensors $1 and $3. The individual electron

temperatures are plotted in the two lowest panels. Orbit attitude
information is listed at the bottom of Figure 2, including the Universal Time
(UT), the altitude (HHGT), L-value (FL), geomagnetic latitude (GLAT),
geographic latitude (XXLAT), longitude (XXLON), and magnetic field
strength (BB).

From 0051 UT to 0056 UT, the satellite traversed the polar cap, observing a
large scatter of electron temperature values during that time. Oyama and
Abe (1987) concluded that this scatter is real and reflects the geophysical
conditions in the polar ionosphere. Between 0056 UT and 0057 UT, both
temperatures exhibit a dip decreasing to a minimum value of 2000 K at

005640 UT and increasing again to 2600 K at 0057 UT. This region
corresponds to the boundary where the flux of precipitating auroral
electrons (0.2-16 keV) starts decreasing and the flux of trapped energetic
particles of 0.1~ 140 MeV energy begins to increase. Simultaneous

measurements show a maximum of the counting rate of energetic particles
at 0058 UT.

At the beginning of the orbit the angle Y is about 170 °. This means that
sensor $3 is nearly vertical to the geomagnetic field, and, therefore, it is

picking up most of the parallel component of electron temperature Tw,
while the sensor $1 is picking up the vertical component T_. The panel
second from the top shows that T(S1)/T(S3) is 0.7 at this time; that is, Tw is
1.4 times higher than T_. From 0051 UT to 0059 UT, the ratio increases

toward one as the angle changes from 170 ° to smaller values. At 0059 UT

the angle Y is nearly 135 ° and the angle Z is 108 °. In this configuration $1
and $3 should pick up equal fractions of the electron temperatures Tm and
T_. In fact, the second panel shows that T(S1)/T(S3) is nearly equal to One
at this time. After 0059 UT the situation reverses, and the parallel
temperature is more strongly observed by sensor $1. T(S1)/T(S3) is 1. I at

0102 UT indicating that the parallel component is still larger than the
vertical component.
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Fig. 2. Electron temperatures measured by the planar probes $1 and $3 during the pass 947 (lower two
panels). Top panel shows the angles X, Y, and Zbetween the X, Y, and Z axes (see Figure 1, page 24)
and the geomagnetic field direction. Also shown is the floating potential. The second panel shows the
ratio between the two temperatures measured by sensors St and $3. Numbers at the bottom are
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(BB), and IW (sunlight indicator: IW = 0 means satellite is sunlit).
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Simultaneous measurements of electron flux in the energy range 0.2 to 16
keV show a strong precipitation pattern during the polar cap crossing from
0051 UT to 0057 UT. Large ion counting rates are seen from 0051 UT to
0056 UT. Thus, there is a time period and region in which electrons are

detected, but no'ions. This period from 0056 UT to 0057 UT corresponds
to a dip in electron temperatures and a slightly enhanced electron
temperature anisotropy.

Figure 3 shows the temperatures and the anlsotropy observed during the
satellite pass 2853. The angles Z and X are about 100 ° and 15 °,
respectively, at the beginning of the pass. In this configuration, sensor $1
detects most of the Tn component, while $3 detects most of the T2

component. The ratio of these two temperatures is about 1.5; that is, Tt is
about 1.5 times higher than T2. Between 2336 UT and 2337 UT, the

configuration is such that both sensors should see about equal fractions of
the two temperature components. Figure 3 shows that, indeed, the ratio of

the electron temperatures from the two sensors is nearly one during this
time period.

For our statistical analysis of the electron temperature anisotropy, we use
only electron temperatures obtained when the normal of one planar
electrode deviates less than 20 ° from the magnetic field direction and when

the vertical component can be simultaneously obtained from an orthogonally
mounted sensor. Figure 4 shows TH versus T2 for the orbit period from

2331 UT to 2333 UT in Figure 3. During this time period, the angle
between the normal of sensor $1 and the geomagnetic field changes from
18 ° to 24 °, and, therefore, sensor $1 detects mostly Tm while sensor $3
detects mostly T_t. The data can be approximated by the relation Tn = 1.2
T2 as shown by the solid line in Figure 4. Figure 5 shows data taken
between 0116 UT and 0118 UT during the satellite orbit 2721. The broken
line shows the best fit curve, which is Tn = T2 + 250. In this case, the

average temperature ratio (Tin - 1.07 T_ solid line) is obtained by giving
more weight to the data points for which the sensor $1 is aligned the
closest to the geomagnetic field.

2.3.3 Statistical Results for the Occurrence of Anisotropy

From figures similar to Figures 5 and 6, we have calculated the temperature
ratio R (= Tt/Tj. ) for 505 satellite passes and investigated the dependence

of R upon geomagnetic latitude, local time, season, and altitude. Figure 6
shows histograms of R for different geomagnetic latitude ranges. All data are
sampled into six geomagnetic latitude zones without discriminating
Southern and Northern Hemispheres. The average height for each data
group varies from 555 km to 470 km. At latitudes less than 20 °, the
number of cases with R less than one is almost equal to the number of cases

with R greater than one. The number of cases with R greater than one
increases as we go to higher latitudes. We conclude that anisotropy is
becoming more likely as we go to higher latitudes.
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Secondly, all data were distributed into six local time ranges. Each of the
six data sets consists of measurements taken during a four-hour period as

shown in Figure 7. The average height ranged from 515 km to 646 km.
Each of the six cases indicates a temperature anisotropy with R greater than

one, that is, Tm greater than T_. The temperature ratio seems to increase

towards midnight.

In order to study how the anisotropy varies with height, all data are grouped

into six height zones starting from 300 km in steps of 100 km, as shown in
Figure 8. Although we cannot see the influence of height upon the electron
temperature anisotropy clearly, a weak tendency seems to exist that Tm
approaches T_ gradually as the height increases. It should, however, be

noted that temperature measurements become more difficult with
increasing height because of decreasing electron density.

Finally, Figure 9 shows the annual variation of R. All data are grouped into
six bimonthly periods, starting January 1985. These histograms seem to
show that the anisotropy Tw > T_ appears more often in summer (July and

August) than in winter (January and February).

Similar statistical analysis is planned to examine the dependence of R on

longitude and on solar and magnetic activity.

2.3.4 Conclusions

The investigation of electron temperature anisotropy observed by the
OHZORA satellite can be summarized as follows.

In the equatorial region, Tm is sometimes higher than T2 and sometimes
lower. With increasing latitude, the anisotropy Tm > T2 dominates.

Tw is higher than T2 for all local times. The difference increases and
becomes clearer toward evening and during nighttime.

• Anisotropy (Tw �T j_> I) appears more often in summer than in winter.

These results clearly show that anisotropies have to be considered in

describing the global and temporal variations of the ionospheric electron
temperature. It is therefore recommended that future satellite instruments
use temperature probes that can discriminate between the two temperature

components.
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2.4 Model Descriptions for the Ion Transition Heights

D. Bilitza

NASA/ GSFC, NSSDC, Code 933

Greenbelt, Maryland 20771, U.S.A.

I. Kutiev

Bulgarian Academy of Sciences
Geophysical Institute

1113 Sofia, Bulgaria

Abstract--The ion composition in the upper and middle ionosphere exhibits

two characteristic transition heights that mark the upper and lower boundaries

of the region dominated by atomic oxygen ions. The upper transition height HT

is found at the point where the ion gas consists of equal parts of oxygen and
light ions, and the lower transition height ht where the oxygen density equals

that of the molecular ions. We investigate the global and temporal morphology

of these heights, summarizing the results of earlier studies. The use of these

characteristic points for the IRI ion composition model is emphasized.

2.4.1 The Upper Transition Height

The ion gas of the topside ionosphere consists mainly of O ÷, H ÷, and He ÷ ions.
O ÷ and He ÷ ions are produced by photoionization, whereas the main source of

H ÷ ions is the charge exchange reaction between H and O ÷. Production and

loss together with redistribution by diffusion and ion drift are the major

processes that shape the distribution of the different ion species. Figure 1,

taken from the work by Raitt et al. (1975), shows O ÷ and H ÷ profiles for
different upper boundary conditions. As a result of the difference in ion mass

and because of the charge exchange reaction, the amount of O ÷ ions decreases

with altitude, whereas the percentage of light ions increases. The transition

height HT is defined as the height at which equal parts of O ÷ and light ions are

present. HT depends strongly on the ion flow conditions at the plasmaspheric

boundary, as is shown in Figure 1. Thus, HT is a critical parameter in specifying

and assessing the topside ion gas. Several studies (see Table 1)have examined

the global and temporal variation of this characteristic height.

In summary, these investigations established the following characteristic
variation pattems:

The diumal variation of HT follows the change in O ÷ density, being lowest

at night and largest during daytime. HT can drop down to as low as 500

km during nighttime and is rarely below 800 km during daytime.

During daytime HT is lowest at the magnetic equator and increases

towards higher latitudes. This is caused by a similar change in plasma

temperatures. Higher temperatures shift the ion densityprofiles upward.
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Fig. 1. Theoretical H+ and O+ density profiles as a function of altitude for different H+velocities at 3000
km. The H+ velocities at the upper boundary in units of krrVsecare (a) 0.06, (b) 0.34, (c) 0.75, (d) 2.0, (e)
3.0, (f) 5.0, (g) 10.0, and (h) 20.0. The shaded region shows the range of O* densities; the lower
boundary corresponding to H+profile (a) and the upper boundary to (h) (Raitt et al., 1975).
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Table 1: HT Studies and Typical Values

Author

Brinton
et al. (1970)

Goel et al.
(1970)

Titheridge
(1976)

Miyazaki
(1979)

Kutiev et al.
(1984)

Bilitza (1984)

Data
Used

Explorer 32
IMSt

OGO 4
Explorer 31

RPA
Alouette 1

ISIS 1
Topside
Sounder

Taiyo R pArt
OGO 6

RPA
Incoherent

Scatter

Day
H T "/km

Geomagnetic Latitude
Solar

Activity Low Middle

Low

Medium

Low

Low

1300

1300

8O0
(800)

8OO
(800)

1400

High

Low

1900

1600

1200
(1200)

1100
(950)

>1500

Night
Geomagnetic Latitude

Low Middle

w

700 700

650 700
(55O)

600 550
(600) ,,, (550)

1100 800

700 1100

Summer value; wintervalue in brackets.
t IMS = ion massspectrometer.
11"RPA = retardingpotentialanalyzer.

HT is higher in summer than in winter by 100 km to 200 km. An

interhemispherical proton flux from the summer to the winter

ionosphere is thought to be the reason for this difference (Brinton et al.,
1970).

HT increases with solar activity. Titheridge (1976) finds nighttime

transition heights about 500 km during solar minimum and about 1100
km at solar maximum.

There are, however, still quite a number of open questions and conflicting
results that have to be resolved by future studies and measurements, for
example:

Table 1 shows that the earlier satellite measurements indicated

generally higher transition heights than the more recent ones. There is

also an obvious discrepancy between transition heights obtained by the
Incoherent scatter technique and those obtained by the in situ
techniques.

Kutiev et al. (1984) report considerable longitudinal changes in
nighttime HT obtained from OGO 6 RPA measurements, whereas the

Taiyo RPA data (Miyazaki, 1979) exhibit a negligible longitudinal scatter.
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Only a few investigators have attempted to represent their results by simple
empirical relationships. Miyazaki (1979) used the following formulas to
describe transition heights deduced from the Taiyo RPA measurements

between March 1975 and October 1976.

_591 - 87.1 sin 2 _ _ > 90°
HT/km -- 1591 87.1 sin 2 • + (217 + 473 sin 2 _)(cos _)o.331 else

is the magnetic dip latitude and :_ the solar zenith angle. Kutiev et al.
(1984b) used a power series in longitude and in magnetic dip latitude to

represent the nighttime HT deduced from OGO 6 RPA data.

In Figure 2 we compare the transition height predicted by these two HT
models with transition heights obtained from the IRI ion composition
models and from the ion composition model by Danilov and Yaichnikov

(1985). For more information about the latter two models, see section 3.4,

page 71, of this document. The diurnal variation of HT is shown at the

magnetic equator (Lima) and at a magnetic midlatitude location (Arecibo).
The IRI model predicts considerably lower transition heights than the other
models. It also produces unreasonably abrupt changes of HT at sunrise and

sunset. The nighttime HT from the model by Kutiev et al. (1984b) is much

higher than all the other predictions. HT deduced from the ion composition

model by Danflov and Yaichnikov (1985) agrees fairly well with Miyazaki's
(1979) HT model at midlatitudes. At the magnetic equator the need for

further data acquisition and modeling work is most obvious: None of the
four models has much in common with the others.

2.4.2 The Lower Transition Height

In the altitude range 100 km to 300 km the ionospheric ion gas consists

mainly of O ÷, O2 ÷, and NO ÷ ions. In the absence of electric fields the
distribution of ions can be explained straightforwardly by the chemical

balance of photoionization and recombination. As a result of these

processes, the concentration of O ÷ ions increases with altitude whereas the

percentage of molecular ions decreases. At the transition height ht the

percentage of molecular ions has dropped to 50°,5.

Oliver (1975) investigated the diurnal variation of this characteristic height

by examining 40 rocket IMS measurements from 1956 to 1971. He found
that the data could be well represented by

ht/km = hs + 203.7 + 24.7 tanh(- (88.4 - :_)/19.7)

The remaining seasonal variation was approximated in terms of annual and

semi-annual terms varying with the day number d.

hs/km = - 16.8 cos((d + 22) 2x/365) - 9.4 sin((2d + 10.5) 2_/365)
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Lathuillere and Brekke (1985) report good agreement between their
EISCAT incoherent scatter results and Oliver's formula.

In Figure 3 the ht values obtained with Oliver's (1975) model are compared

with transition heights predicted by the IRI and by the ion composition
model of Danilov and Yaichnikov (1985). At midlatitudes IRI agrees fairly

well with Oliver's results, whereas the model by Danilov and Yaichnikov

(i 985) exhibits an unreasonably small change from day to night. At the

equator IRI predicts the transition heights ht much lower than the other
two models.

2.4.3 Conclusion

The lower and upper ion transition heights are parameters which

characterize and specify the ion composition profiles throughout most of the
ionosphere. Our review has found only a few studies which examined the

global morphology and the temporal change of these heights. Unfortunately,
these studies have revealed somewhat conflicting results, in particular close

to the magnetic equator. All three techniques used to evaluate transition

heights have their specific accuracy problems. The ion mass spectrometers
(IMS) and retarding potential analyzers (RPA) flown on long-lasting satellites

missions have to deal with calibration problems and in-flight contamination
effects. Ground-based incoherent scatter radars need long integration times

or some assumptions about the plasma temperatures to deduce ion density
ratios from the backscattered signal (Lathuillere et al., 1983).

Inconsistencies can only be resolved by comprehensive statistical studies of

the data base accumulated so far and by a continued measurement program
for these parameters from ground and space. It is clear that a better

understanding of the variation patterns of the transition heights will

significantly improve the modeling and prediction of ionospheric ion

composition.
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2.5 Models for Horizontal E- and F-Region Drifts

E. S. Kazimirovsky, E. L Zl_vty, and M. A. Cherntgovskaya
Siberian Institute of Terrestrial Magnetism, Ionosphere,
and Radio Propagation (SibIZMIR)
664033, Post Box 4026
Irkutsk, U.S.S.R.

AbstractmE - and F-region horizontal ionospheric drift data, obtained
worldwide from 1957 to 1970 by ground-based radio methods D1 and D3,
are statistically analyzed and a computer code for the average variations in
latitude and local time is constructed. This model has been adopted for the
International Reference Ionosphere, IRI-90.

2.5.1 Data and Method

Plasma transport is very important for understanding the variations of the
ionosphere in space and time. Therefore, the URSI/COSPAR Task Group on
IRI has initiated an effort to construct a computer code that generates ion
drifts for chosen location and local time.

A large quantity of experimental data obtained by measurement of horizontal
ionospheric drifts is now available on a worldwide scale. The data we
considered here were obtained by the spaced-receiver methods D1 and D3,
as described by Briggs (1977). We have developed appropriate procedures
that allow us to infer from these data the main parameters of the global

ionospheric motion at E- and F-region levels (Vergasova et al., 1979).

Thus, following our earlier proposals (Kazimirovsky et al., 1984, 1985), we
present here an analytical description of the dynamic behavior of the
terrestrial ionosphere.

The experimental data are from 23 stations in the Northern Hemisphere
and were obtained between 1957 and 1970. The worldwide coverage in
geographic latitude is 7 ° to 71 ° north (7.5 ° to 64.1 ° north in geomagnetic
latitude) and 0 ° to 131 ° east in geographic longitude.

2.5.2 The Drift Models

About i00000 individual drift velocity values in the E-region (90 km < h <
135 km) and F-region (h > 135 km) were statistically treated with sampling
according to season and to solar activity as indicated in Table 1 and Table 2.
Definition of seasons is as follows: December through February = winter,
March through May = spring, June through August = summer, September
through November = fall.
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"SEASON = all" corresponds to the averaged velocities for the whole

observed period. Three periods of solar activity are considered: (I) the

whole solar activity range from minimum to maximum (all), (2) solar
maximum (FIO. 7 = 200), and (3) solar minimum (FIO. 7 = 70). FIO. 7 is the

solar radio flux at 10.7 cm wavelength (Covington index).

Table 1: Analysis Periods for E-Region

PERIOD 1 2
S E A S O N winter spring
F 10. 7 all all

3 4 5 6
summer fall winter spring

_ 200 200

PERIOD 7 8 9 10 11 12
S E A S O N summer fall winter .spring summer fall
F10.7 200 200 70 70 70 70

Table 2: Analysis Periods for F-Region

PERIOD 1 2 3 4 5 6 7
S E A $ O N winter spring summer fall winter sprinq
F10.7 all all all all all 200 200

PERIOD 8 9 10 11 12 13
S E A S O N summer fall winter spring summer fall
F10.7 200 200 70 70 70 70

An algorithm for computing the zonal and meridional drift components VX,
VY can be found in section 3.5, page 75, of this document. It is written in
PASCAL 8000 for IBM 360/370 compatible computers. The main block of

the program is the procedure DRIRR for calculating VX and VY for a certain

period (P), geomagnetic latitude (FI), and local time (LTD. VX and VY are

first computed by Fourier development:

3

VX {LTr, FI) = Xo(FI} +
n=l

Xn (FI} sin{n LTr + CXn {FI))

3

VY (LTT, FI} = Yo(FI} +n=_ Yn (FI) sin(n LTT + CYn {FI}}

for six main latitudes FI = I0 °, 20 ° ..... 60 °. Spline interpolation between

these allows determination for any specified value of FI. The coefficients

Xn(FI), Yn(FI), CXn(FI), and CYn(FI) are contained in the files FAR1 and FAR2

listed in section 3.5, page 75, of this document.

42



Chapter 3

Contents

Data Sources ....................................................... • . . 45

Functions ................................................................................................. 45

3.1.2.1 Booker Profile Function .................................................... 46

3.1.2.2 Rawer Lay(er) Function ..................................................... 48

3.1.2.3 Day-Night Transition Function ....................................... 48

3.2 Electron Density ............................................................................................... 5 1

Topside (hmF2to I000 km) ........................................................... 52

3.2.1.1 F2-Peak Density (NmF2, foF2) ....................................... 52
3.2.1.2 F2-Peak Height (hmF2, M(3000)F2) ........................... 52

3.2.1.3 Topside Profile Shape ........................................................ 53

Bottomside (hmF1 to hmF2) ........................................................... 56

F1-Layer (hmF1 to HZ) ....... 57

Intermediate Region (HZto hv_) ................................................... 59

E-Peak and Valley (hvTto hmE) ..................................................... 59

D-Region and E-Bottomside (hmE to HA) ................................. 61

LAY Functions for Middle Ionosphere (hmE to hmF2) ......... 62
Plasmaspheric Extension .................................................................. 64

Ionospheric Electron Content ........................................................ 64

3.3 Hasma Temperatures ..................................................................................... 65

3.3.1 Electron Temperature ....................................................................... 65

3.3.2 Ion Temperature .................................................................................. 68

3.4 Ion Composition ............................................................................................... 71

43





3.1 Introduction

IRI-90 describes monthly averages of electron density, electron

temperature, ion temperature, and ion composition in the non-auroral, quiet
ionosphere from 100 km to 1000 km.

3.1. I Data Sources

The following data sources were used to establish IRI-90.

Worldwide ionosonde measurements (peak plasma frequencies => peak
densities)

Incoherent scatter measurements from Jicamarca, Arecibo, St. Santin,
Millstone Hill, and Malvern (E-valley, F2-peak height, F2-bottomside,
topside, electron and ion temperature)

• Alouette 1, 2 topside sounder measurements (topside)

• AE-C, ISIS 1 and 2 in situ measurements (electron temperature)

AEROS in situ measurements (electron and ion temperature, ion
composition)

Rocket measurements (D- and E-region electron density and ion
composition)

Beacon satellite data (ionospheric electron content for test purposes)

Ground-based absorption measurements (D- and E-region variability)

3.1.2 Functions

A variety of analytical expressions and functions is used in IRI-90 to

represent the temporal and spatial variations of the ionospheric densities
and temperatures. Global variations (with latitude and longitude/local time)
are in most cases described by a form of a spherical harmonics series
(Legendre polynomials).

A group of functions introduced by S. Epstein has been used to represent
altitudinal variations as well as special latitudinal and diurnal features. The

first three members of the Epstein family of functions are shown in Figure 1
and defined as

EPS-I (h ; HX, SC) = In(l + e x)

EPSo (h;HX, SC) = I/(I +e -x)

EPSI (h ; HX, SC ) = eX/(1 + eX)2

(3. I a)

(3. Ib)

(3.1 c}
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with

x = (h - I-IXI/SC (3. I d)

and

EPSi+I = d EPSi/dx (3. le)

EPS_I describes a transition, EPSo a step, and EPSI a peak at h = HX with
the width SC. Three combinations of Epstein functions are explained in the

following sections. All three have been used repeatedly in constructing the

IRI profiles.

The Epstein step function can also provide a type of filter function taking
the value 0 below a certain altitude and the value 1 above. Rawer (1987)

explained how three such filter functions can be used for a joint analytical
representation of the whole electron density profile.

3,1,2.1 Booker Profile FUnction

A parameter Y, which steps from a value YI to a value Y2 at h = hs, can be

described by the function
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EPSTEP(h; Y1, Y2, hs, ds} = Y/+ {Y2- YI) EPSo(h: bE, ds) {3.2)

ds determines the width of the transition region. Booker's (1977) approach
uses several such steps. He assumes that the altitudinal profile of a
parameter y can be divided into several subsections such that in each

subsection y can be fairly well approximated by a straight line or, in other

words, that the gradient dy/dh is nearly constant in every subsection {e.g.,
Figure 5). Booker calls this the skeleton profile. The derivative of the
skeleton function can then be represented by a sum of EPSTEP functions,

stepping from subsection to subsection. Integrating from ho to h, we obtain
y in terms of the "Booker function" B.

y(h) -yo = B{h; ho, M, DY, HX, SC)

M

= (h- ho) DY1 + j=_ (DYj+I - DYj) SCj ( EPS_I(h; /-/Xj, SCj}

- EPS-I(ho; HXj, SCj) } (3.3}

M is the number of subsections, DYj _j = 1 to M + I) are the constant
gradients in these subsections, HXj {] = 1 to M) are the subsection
boundaries, and SCj {i = 1 to M} are the thicknesses of the transition zones

between subsections. Yo is the integration constant, with y (ho) = yo.

Suitable transition thicknesses SCj have to be found by trial and error. Small

SCj values produce a profile closer to the skeleton than to the real profile;
large SCj values provide greater smoothness but could cause interference
between adjacent step functions. Best results are obtained with

D/20 < SCj < D/IO (3.4a}

where D is the height range of the smaller of the two adjacent subsections

D = min (hj- hj-1, hj+l- hj) (3.4b)

Care has also to be taken in choosing the anchor point (integration
boundary) ho. It should not be located in one of the highly variable transition
regions. The best choice is a ho from a region where the skeleton and the

original profile are close together. These constraints make it difficult to

represent layer profiles with Booker's method. A profile peak can be

approximate by either two skeleton lines whose gradients have opposite sign
or by three skeleton lines, where the gradient of the middle one is zero. In
the first case, the tip of the layer is in the middle of the transition zone and

the peak height cannot be used as anchor point ho. In the second case,
condition (3.4) will almost always be violated.
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$. 1,2.2 R_wer Lav(er] Function

A better way of representing layer shape was Introduced by Rawer (1984).
His LAY function combines the Epstein transition function with a linear term.

LAY (h; hm, HX, SC) = EPS_I(h; HX, SC) - EPS_I(hm; HX, SC)

- (h- hm) EPSo(hm; HX, SC)/SC (3.5)

It peaks at h = hm, where it takes zero value. A wide variety of layer shapes
can be represented by the LAY function as shown in Figure 2. The
appropriate HX and SC values can be found by a non-linear least-square-fit

procedure.

3.1.2.3 Day-Night Transition Function

Epstein step functions are also used to describe simple day-night variations
of ionospheric parameters. The combination of two step functions

HPOL(t; YD, YN, SR, SS) = YN + (YD - YN) EPSo(t; SR, TD)

+ (YN- YD) EPSo(t; SS, TD) (3.6)

varies with local time t continuously from a constant nighttime value YN to a

constant daytime value YD. The steps occur at the local times of sunrise SR

and sunset SS and the step width is determined by TD (usually one hour).
This local time variation is used for all parameters for which only day and

night values are listed.
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3.2 Electron Density

The IRI electron density profile is divided into six subregions as shown in

Figure 3, including the topside, the F2-bottomside, the Fl-layer, the
intermediate region, the E-valley, and the E-bottomside and D-region. The
boundaries of these subsections are marked by several characteristic profile
points including the F2-, FI-, and E-layer peaks. The critical frequencies
foF2, foF1, and foE of these peaks have been monitored by the worldwide
network of ionosondes since the forties. A radio wave with the critical

frequency foF2 transmitted vertically from the ground will be reflected at
the F2-peak. The squares of the critical frequencies are proportional to the
electron density at the height where reflection occurs,

NmF2/m -3 = 1.24 I0 I0 (foF2/MHz)2 {3.7)

hmF2

Topside (1}

F2 (2)

hmF1

HZ
HST

hvT

hmE

HDX
HMD

HA

F1 (3)

Intermed. (/_) D

,

-E-Valley (5 I D

[6

-_ HBR

I
I
I
£

NVB NmE NmFI

log N =_

Fig. 3. Buildup of IRI electron density profile.

NmF2
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3.2.1 Topside (hmF2 to 1000 kin)

The topside profile is normalized to the F2-peak density NmF2 and altitude

hmF2.

3.2. i. 1 F2-Pcak Density (NmF2. foF2)

IRI-90 offers two choices for the description of the F2 critical frequency

foF2 (and therefore NmF2): (I) the model recommended by the
International Radio Consultative Committee (CCIR, 1967) and (2) the one

recently proposed by the International Union of Radio Science (URSI, Rush
et al., 1989). The mathematical description is the same in both cases. It is

based on first Fourier analysis (seventh order, 15 coefficients) of the

monthly median diurnal variation as observed by the worldwide network of
ionosondes, and secondly, a worldwide description in terms of spherical

(Legendre) functions, separately found for each of the 15 coefficients (Jones
and Gallet, 1965). Two sets of 988 coefficients each are given for each

month, one for low and one for high solar activity (R12 = 0, I00); foF2 for

intermediate activities is found by linear interpolation.

For very high solar activities foF2 observations indicate a saturation effect.
In IRI this effect is enforced by keeping foF2 constant above R12 = 150.

(See Equation [3.13d]).

Because of the strong magnetic control of F-region processes, it is

advantageous to use a magnetic field coordinate in the global analysis. The
best results were obtained with the modified dip latitude (short: Modip), _,

introduced by Rawer (1963)

tan I_ = _/cosI/2_ 0 {3.8)

which at low latitudes is near the magnetic inclination (short: dip), Lp, and

gets closer to the geodetic latitude _0 as latitude increases.

For the newer URSI model, the data sparse regions (oceans, Southern

Hemisphere) were first populated with foF2 values obtained by aeronomic

theory and then the analysis procedure was applied (Rush et al., 1984,
1985). The URSI coefficient set provides a somewhat better representation

of ocean foF2 values than the CCIR model, when compared with ISS-b

topside sounder measurements (Rush et al., 1989). Recent reviews of f oF2

modeling were given by Bilitza et al. (1987) and Bradley (1990).

9.2.1.2 F2-P¢ .0ok Height (hmF2, M(3000)F2)

The F2-peak height hmF2 is obtained by its close correlation with the

propagation parameter M(3000)F2 (Shimazaki, 1955; for review, see Bradley
and Dudeney, 1973, and Bilitza et al., 1979). M(3000)F2 is defined as

M(3000)F2 = MUF/foF2 (3.9)
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where MUF is the maximum usable frequency that, refracted in the
ionosphere, can be received at a distance of 3000 km. This factor has been

routinely scaled from ionograms, and numerical maps (CCIR, 1967) have

been established in the same way as described above for foF2. hmF2 is

calculated from M(3000)F2 with the empirical formula (Bilitza et al., 1979)

hmF2/km = 1490/(M(3000)F2 + DM) - 176 (3.10a)

with the correction factor

DM = flf2/(]'oF2/foE- f3) + f4 (3.10b)

and the solar activity functions

fl = 0.00232 R12 + 0.222 (3.10c)

f2 = 1 -R12/150 exp (-(_P/40) 2) (3.10d)

f3 = 1.2 - 0.0116 exp(R12/41.84) (3.10e)

f4 = 0.096 (R12 - 25)/150 (3.1 Of)

R12 is the 12-months-running mean of solar sunspot number and • is the

magnetic dip latitude

1
tan ' = tanq (3.11)

which is related to the magnetic inclination (short: dip) q) of the Earth's
magnetic field at 300 km altitude.

Formula (3.10) is based on the work by Shimazaki (1955), who was the first
to describe the strong anti-correlation between hmF2 and M(3000)F2, and

the work by Bradley and Dudeney (1973), who were the first to take account

of the effect of the E-layer ionization on the correlation. Bilitza et al. (1979)

used Incoherent scatter data to Improve the earlier relationships, which
were based on the, generally, less reliable hmF2 values deduced from

ionosonde recordings.

3.2.1.3 Topside Profile Shape

The topside model is based on the descriptive compilation of Alouette

topside sounder data by Bent and his colleagues (Llewellyn and Bent, 1973).

Epstein functions are used to obtain an analytical representation of the
values given by Bent in tabular form.

N(h)/NmF2 = exp(-I/0c • B(x; xo, 2, TG, TX, TC}) (3.12a)
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B is the Booker function explained in section 3.1.2.1 (Equation [3.3]) and x

is a modified altitude variable transforming the F2-peak to near 300 km

x- xo = c< (h- hmF2)

with the transformation factor

c_ = 700/(1000- hmF2)

and the new peak height

xo = 300- 5

The Epstein parameters for the topside profile are given in Table 1.

(3.12b)

(3.12c)

(3.12d)

Table 1: Epstein Parameter for Topside Formula

J TG TX TC
1 __ 300 100

2 0 394.5

3 .q - -

The parameters _, TI, _3 are functions of the geomagnetic latitude ¢, the

monthly solar radio flux FIO. 7, and the F2 critical frequency foF2

_, TI, _3 = to + tt Tm(¢) + t2 R(FIO.7) + t3 T{¢) R(FIO.7) +

t4 foF2 + ts foF2 T(¢) + t6foF22 (3.13a)

where

T(¢) = cos2_ (3.13b)

_EPSI (¢, 0, 15) for 11
Tin(C) = [cos2¢ for _ J

(3.13c)

_(F10.7- 40)/30 for F10.7 < 1931
R(FIO. 7) = [5.1 else J

(3.13d)

The coefficients tl were determined by fitting these functions to the

corresponding values obtained from Bent's tabulation and are listed in

Table 2.
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Table 2: Topside Profile Parameters

to
tl
t2

t3

t4

t5

t_

11
0.058798

-0.08
-0.014065

0.0069724
'0.0024287

0.004281
-0.0001528

0.078922 -128.03
-0.0046702 20.253
-0.019132 -8.0755

0.0076545
0.0032513

-0.65896
0.44041

0.006029 0.71458
-0.00020872 -0.042966

The corrective term 5 is related to 11, _, and J3 by

5 = I + Z- / (I+Z) 2 + 400 (3.14a)

with

Z = exp (94.45/13) (3.14b)

It should be noted that the parameters TG, TX, and TC for the Booker

function were obtained by a least-square-fit procedure, rather than from a

skeleton profile as originally intended by Booker (1977) (see section 3.1.2.1,

page 46). Thus, the topside representation is closer to the LAY formalism

(see section 3.1.2.2, page 48) as pointed out by Rawer (1987). Rearranging
formula (3.12a) in terms of LAY functions (Equation [3.5]), one obtains

N(h)/NmF2 = exp (- J3Tl/g LAY (x; xo, 394.5, _3) -

100 _ LAY (x; Xo, 300, 100) - (h - hmF2) 7) (3.15a)

where

a" = 11/(1 + exp((5 + 94.5)/_3)) + _/(1 + exp(5/100)) - (3.15b)

In general, _" is so small that the linear term can be neglected in computing

the argument of the exponential function, at least in the lower topside.

Good agreement was found in comparisons of IRI with AEROS and AE-C

satellite data and with Jicamarca incoherent scatter measurements (Bilitza,

1985a). Buonsanto (1989) reported that IRI overestimates the electron
densities observed by the Millstone Hill incoherent scatter radar. A

comparison with DE 2 satellite data indicated that IRI topside density may
be too low for very high solar activities (Bilitza et al., 1987).
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3.2.2 Bottomside (hmF1 to hmF2)

The bottomside profile description was established by Ramakrishnan and

Rawer (1972). It is defined as (see also Figure 4)

N(h)/NmF2 = exp(-x BI) /cosh(x) (3.16a)

with

x = (hmF2- h)/Bo (3.16b)

NmF2 and hmF2 are the electron density and height of the F2-peak, and B I

is equal to 3 in most cases (see section 3.2.4, page 59, for exceptions). IRI-
90 offers two choices for the bottomside thickness parameter Bo: (1) a table

of values (Table 3) based on reduced ionosonde profiles as in previous

editions of IRI, and (2) Gulyaeva's (1987) model for the half-density height

ho.5. In most cases, the newer model (option [2]) is the better choice,

especially at low latitudes.

Table 3: Bottomside Thickness Parameters B, Deduced from Ionograms Recorded at
Mexico City, Huancayo (Peru), and Lindau (F.R.G.)

B#km

Modip R=10
=18 R=100

Modip R=10
=45 _R=100

RL]: spring !1 summer It Fall II winter=12 LT=0 LT=12 I LT=0 LT=12 LT=0 LT=12 LT=0

""4 I" i t li °° II61113 115 150 116 138 123 94 132
s9 75 185 ii57 76

_72 184 1183 I102 I100 11120 11o 107 1103 176 86

Interpolation Rules: R (12-months-runningmean value): Linear interpolation.
LT (local time): Day-night transitions; see section 3.1.2.3, page 48.
Modip (modified dip, p., Equation [3.8]): EPSTEP (p.;Bo (18), Bo (45), 30, 10); see section

3.1.2.1, page 46. Bo is kept constant for I1_t < 18.

Gulyaeva (1987) has established, based on ionosonde data, the following
relationship between the F2-peak height, hmF2, and the height, ho.5, where

the density profile has decreased to half the F2-peak density

p= ho.5/hmF2 = EPSTEP (:_; 0.6, 0.8, 20s, 15) (3.17)

with the seasonal parameter s taking the values 1, 2, 3 for winter, equinox,

and summer, respectively, or using the day number d approximately

s(d) = 2 -cos (2_/365 • d) (3.18)
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Fig. 4. Bottomside function for various B1 values.

Assuming a bottomside profile as given by Function (3.16), one can use
Gulyaeva's model to determine the thickness parameter Bo (Bilitza and
Rawer, 1990).

Bo = hmF2 (I - p)/C (3.19}

where C is a function of BI and takes the values

81

C

3

0.755566

3.5

0.778596 0.797332

4.5

0.812928 0.82614

Gulyaeva's (1987) model has also shown good agreement with incoherent
scatter measurements at Arecibo (Mahajan and Kohli, 1987).

3.2.3 F1-Layer (hmF1 to HZ)

Ducharme et al. (1971, 1973) established, based on a large amount of
ionosonde data, the following relationship for the variation of the F1 plasma
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frequency foFl with solar zenith angle _, solar activity (R12), and magnetic

dip latitude (_).

foF1 =fs cos n :_

fs = fo _floo- fo) R12/100

fo = 4.35 + 0.058 I_ I - 0.00012 • 2

floo = 5.348 + 0.011 1 • I - 0.00023 • 2

n = 0.093 + 0.0046 I_ l - 0.000054 • 2 + 0.0003 R12

(3.20a)

(3.20b)

(3.20c)

(3.20d)

(3.20e)

Their model provides also a critical solar zenith angle :_s for the occurrence

probability of the Fl-feature. An Fl-layer is only assumed to exist when the

solar zenith angle is smaller than :_s.

:Es = _o (ZlOO - :Eo} RI2/100 (3.21a)

:_o - 49.85 + 0.35 IT I (3.21b)

;_Ioo - 38.96 + 0.51 IT I (3.21c)

IRI omits the Fl-feature at night and in winter in accordance with the

experimental evidence.

The Fl-peak height, hmF1, is found as the height at which the bottomside

IRI profile reaches the Fl-peak density. It is important to notice that hmF1
will be affected by the choice of the bottomside thickness parameter Bo, for

which in IRI-90 two options are given, as described in the previous section.
Bilitza and Rawer (1990) indicated that option (2), Gulyaeva's (1987) model,

produces hmF1 values closer to other estimates for this parameter (e.g.,

Formula [3.33]).

If the F1 feature exists, a parabolic Fl-layer is added to the bottomside

profile

N(h)/NmF2 = exp (-xal)/cosh(x) + CI ((hmFl - h)/Bo) I/2 (3.22a)

with

_EPSTEP (18; 0.09, 0.2, 30, 10) for I}_I < 18
CI = IEPSTEP (_; 0.09, 0.2, 30, 10) else

(3.22b)

where _ is the modified dip latitude (Equation [3.8]) and the EPSTEP

function is given in Equation (3.2).
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3.2.4 Intermediate Region (HZ to hvT)

This is the region where the upper profile (normalized to NmF2) is merged
with the lower profile (normalized to NmE). First, the height HST is found
where the F1 profile function reaches the density value of the E-peak, NInE
(see Figure 3). It may occur that the profile function does not reach down to
a very low NmE value or that the height HST is found below the top of the E-
valley. In such cases the parameter BI, in the bottomside profile function

(3.16a) is changed from 3 to 3.5 to 4 and finally 4.5 (see Figure 4). If HST
cannot be found with these BI values, the gap between HZ and the E-valley

top is closed by linear interpolation. The upper boundary of the
intermediate region is defined by ....

HZ = (hx + HSTJ/2 (3.23a)

with

rhmF1 if Fl-layer is present
hx = LhmF2 else (3.23b)

Starting from HZ the profile is bent downward parabolically such that it
meets the E-valley top hwr. This is accomplished with the altitude
transformation

h'- HZ = 3"/2 + (T2/4 - T (h - HZ)) 1_2 (3.24a)

where

T = (HZ- HST)2/(HST- hR) (3.24b)

and

if valley exists
else (3.24c)

hvT is the height at the top of the valley and hmE is the height of the E-
peak.

3.2.5 E-Peak and Valley (hvT to hmE)

The E-peak critical frequency is described by the model developed by
Kouris and Muggleton (1973a, b) for CCIR (1973). It consists of four factors

foe 4 = A. B • C. D (3.25a)
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depending on the 12-months-running mean of the solar 10.7 cm radio flux

(COV12), on season (:_noon is the solar zenith angle at noon), on geodetic

latitude (q_), and on the solar zenith angle (:_).

A = 1 + 0.0094 (COV12 - 66) (3.25b)

B - cos m _noon (3.25c)

_-1.93 + 1.92 cos_0 for I _01 < 32 °
m = L0.11 - 0.49 costp for I _01 > 32 °

(3.25d)

23 + 116 cosq_ for ] ¢p ] < 32 ° (3.25e)C = 92 + 35 cosq_ for I_ [ > 32 °

D = cos n:_ a (3.25fl

11. for I_0] > 12 ° (3.25g)n = .31 for lip ] < 12 °

Different from CCIR (1973), a modified zenith angle :_a was introduced to

improve the nighttime variation (Rawer and Bilitza, 1990).

:_a = :_ - 3 EPS-I (:_; 89.98, 3) (3.25h)

During all times foE is kept above or equal to the observed minimum value

foEmln = 0.121 + 0.0015 (COV12 - 66) (3.26)

A constant peak height hmE = 105 km is assumed for all conditions.

The F-region peak and valley profile is described by a fifth order power

series

N(h)/NmE = 1 + E_ x 2 + E2 x 3 + E3 x 4 + E4 x 5 (3.27a)

with

x= h- hmE
(3.27b)

Parameters El, E2, Ea, and E4 are determined from the valley width, HBR,

the valley depth, DP, the distance between valley base and hmE, HABR, and

the logarithmic derivative at the valley top, DLN. The parameter values
listed in Table 4 were obtained from Incoherent scatter measurements.
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Table 4: Valley Parameters

Mid-
night

Noon

I Modip = 18Modip = 45
Modip = 18
Modip = 45

HABR/km HBRIkm D_%
28 45 81
28 67 81

0 0 0
10.5 17.8 winter: 10

else: 5

DLN/km -1

0.06
0.06

0
summer: 0.01

else" 0.016

hmE/km

105
105

105
105

Notes: DP = 1O0(NINE- NvB)/NmE; NvBis the densityat thevalleybase.
dlnN

DLN=_ h =hvT

Interpolationprocedureis the sameas indicatedinTable 3 for Bo.

For the deep nighttime valley the power series is fitted to the logarithm of

the electron density rather than to the density itself. At low and equatorial

latitudes the valley feature has been observed irregularly during daytime, but

not frequently enough to be included in a monthly average profile (e.g.,
Mahajan et al., 1990). In the case of zero valley depth (no valley), the F1-
layer function is merged all the way down to hrnE.

Since it appears quite irregularly, the sporadic E phenomenon-is not

incorporated in the IRI profile description.

3.2.6 D-Region and E-Bottomside (hmE to HA)

Most D-region profiles exhibit a characteristic inflection point with the
height hind and the density NmD. Mechfley and Bilitza (1974) found the

following empirical relationship from rocket measurements (see also Bilitza,
1981a).

NmD/(10Sm -3) = (6.05 + 0.088 R12) exp(- 0.1/cos2.7;E) (3.28)

where R12 is the 12-months-running mean of the solar sunspot number and

:_ is the solar zenith angle. NmD is kept greater or equal to a minimum
(nighttime) value of 4 • 108m -3.

The density profile starts at height HA and is represented by a third order
polynomial (Mechtley and Bilitza, 1974; Bilitza, 1981a).

N(h)/NmD = exp (F] x + F2 x 2 + F3 x 3) (3.29a)

with

x= h-hmD (3.29b)

Different F3 parameters are used above (F3 a) and below (F3 b) the inflection

point to account for the drastic change in scale height. The parameters
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Table 5: D-Region Parameters

Time

Day

Night

Geographic
Latitude

Low

Middle

All

hmD/km HA/km F1/km Fikm 2 Fj,/km 3

80 65 0.02 -2"10 -4 9.37 "10-3

80 65 0.05 -1.25-10 -3 8.18"10 -3

88 80 0.05 -1.25.10 -3 8.79-10 -3

F3blkm 3

4.89-10 -4

1.707-10 -4

1.22.1 0 -2

hDX/km

85.6

85.6

92.5

listed in Table 5 were obtained from the rocket measurements compiled by

Mechtley and Bilitza (1974).

Somewhat arbitrarily an exponential function is used to connect the D-region

profile with the E-layer peak density NmE and height hmE.

N(h)/NmE = exp(-D1 (hmE- h) K) (3.30)

The parameters DI and K are determined such that the function agrees with the

D-region profile function and its first derivative at the height hDX (see Table 5):

K = -DN (hmE - hDX) / (NDX In(NDX/NmE)) (3.31 a)

DI = DN/(NDX • K (hmE - hDX) K-l) (3.31b)

NDX is the electron density at hDX and DN the derivative dN/dh at that height.

Comparisons with radio wave propagation data have resulted in several,
sometimes conflicting, proposals for changes of the IRI D-region profile (Singer

et al., 1984; Ferguson and McNamara, 1986; Pintado et al., 1987; Oyinloye,

1988). Since, however, these are all indirectly deduced profiles based on

certain assumptions about the collision frequencies, additional experimental
evidence is needed before IRI can be changed with confidence (Serafimov et al.,

1985).

3.2.7 LAY Functions for Middle Ionosphere (hmE to hmF2)

A combination of four LAY functions (see section 3.1.2.2, page 48, Equation [3.5])

can be used to represent the electron density profile from the E- to the F2-peak

in analytical form (Rawer, 1984, 1986, 1988; Suchy and Rawer, 1988).

log(N( h) / NmF2)

4

= __, Aj LAY(h; hmF2, HXj, SCj)

j=l

(3.32)

62



A preliminary set of parameters HXj, SCj is listed in Table 6 (Bilitza and

Rawer, 1990). The amplitudes Aj are obtained automaUcally by least-square-

fitting to the constraints listed in Table 7. All peak and valley parameters

Table 6: Parameters for the Four LAY Functions

J

1

2

3

4

Day

0.9 hmF2

HX SC

0.1204 (hmF2-ho.5) + 56.8

hmF l * (hmF2+hv-r)/2 10

hvB hvB 9

hmE-6 hmE 6

(hmF2 + ho.5)/2,if F1-layeris not present.
t ho.5is the height,where N(h)= 0.5 NmF2 (see Equation[3.17]).

Table 7: Constraints for LAY-Formalism

Day Night

1 1

2 2

3 3

4 4

5 5

6

7 6

8 7

h

ho.5

hvT

hve

hmE

hBE*

hmF1

hve

hmE

0.5 NmF2

NmE

Nve

NmE

NVB

NmF1

N dN/dh

0

- 0

Weig

Day

ftt

1

2

5

1

3t

50

500

ht

Night

1

1

3

5

0.5

50

500

hBE = hmE- (hvB- hmE).
t Zero, if Fl-layer is not present.
11" f = EPSo (z; 0.15, 0.1)

=1
= 0.5

withz = log(No.#NmFI) and No.5= 0.5 NmF2.
if Fl-layer is notpresent,
if (NmF1- No.5)(hmF1- ho.5)< O.
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are the same as those described for the standard IRI-90 profile, except for

hmF1 which is calculated with the widely used formula

hmFl/km = 165 + 0.6428 :_
(3.33)

% is the solar zenith angle in degrees. Because there are more constraints

(seven or eight) than free parameters (four), the degree to which the
individual constraint is enforced will depend on the weight that is assigned

to it during the fitting procedure. For more information and application to

other parts of the density profile, see Rawer and Bilitza (1990).

3.2.8 Plasmaspheric Extension

Rycroft and Jones (1985, 1987) have developed a plasmaspheric extension
for the IRI electron density model. Their diffusive equilibrium model
describes the field-aligned distribution of plasma out to L-values of 6. A

merging procedure with the IRI topside profile is suggested at a reference
level near 650 kin. This plasmaspheric extension is not yet included in IRI-

90 but may be available from the authors.

3.2.9 Ionospheric Electron Content

McNamara (1983, 1984, 1985) has compared a large data base of total

electron content (TEC) observations with the TEC values computed with

IRI-79. He finds generally good agreement at midlatitudes; however, IRI-79

underestimated the TEC observed close to the magnetic equator by up to a
factor of 2. The improved topside profile in IRI-86 helped to reduce this

discrepancy to about 10% to 20%. Using the new option for the bottomside

thickness parameter Bo will further improve the agreement.

Application of IRI for satellite orbit determination was discussed by Bilitza et
al. (1988) and by Coster et al. (1990). A recent comparison of IRI and TEC

measurements is given in section 2.4, page 33, of this report.
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3.3 Plasma Temperatures

The IRI-90 profiles for the electron and ion temperatures extend from 120 km to
1000 km. First order estimates can be obtained up to 3000 km; above 1000 km

the two temperatures are assumed to coincide.

At the lower boundary, HTA = 120 km, thermal equilibrium is assumed between
neutrals, ions, and electrons

Te(HTA) = TI(HTA) = Tn(HTA) (3.34)

in accordance with most of the observations. Differences between electron and

neutral temperatures at these low altitudes have been reported by Oyama et al.
(1980).

With increasing altitude the electron temperature is always kept above (or equal
to) the ion temperature, which in turn is kept above the neutral temperature

Te(h) > Ti(h) ---Tn(h) (3.35)

Variations with solar activity are not explicitly included in the IRI-90 plasma

temperature models. The above stated constraints (coupling to neutral
temperature) can, however, cause solar activity variations when all temperatures
are close together. In such cases, for example, at nighttime, the plasma

temperatures vary with solar activity in the same way as the neutral temperature
does. A review of observed and modeled solar activity variations of plasma
temperatures was given by Bilitza and Hoegy (1990).

IRI uses the COSPAR Intemational Reference Atmosphere (CIRA) as its neutral
temperature model. The IRI computer code contains subroutines to calculate the
CIRA (1972) temperatures. It is planned to incorporate the newly released CIRA
(1986) model into IRI, as soon as an appropriately simplified version is available.

3.3.1 Electron Temperature

The development and improvement of the IRI electron temperature model
was described by Bilitza (1981b, 1985b) and Bilitza et al. (1985). The electron

temperature profile is subdivided into six regions defined by the region
boundaries AHHj [i = 0 to 6) as shown in Figure 5. Using Booker's (1977)
approach, the temperature profile is approximated by a straight line in each
region. Thus, the temperature can be described as (see section 3.1.2.1, page
46, Equation [3.3])

Te(h) =. ATEo + B(h; AHHo, 5, ST, AHH, DTE) (3.36a)

with the region gradients

STj = {dTe/dh)j-1, j = (ATEj- ATEj_I)/(AHHj- AHHj-I) (3.36b)
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Fig. 5. Buildup of the IRI electron temperature model.

The region boundaries AHHj, the electron temperatures ATEj at these
boundaries, and the transition thicknesses DTEj are given in Table 8. If we

Table 8: Electron Temperature Parameters

j AHHj_km

0

1

2

3

4

5

6

120

hm

300

400

600

1400

3000

DTE/km

5

5

10

20

20

A TE i

Tn(120km)

TEm

TEB_3OOkm)

TEsK400km)

TEs_6OOkm)

TEe_1400km)

TEsK3000km)

Source Model

CIRA (1986)

Brace and
Theis (1981)

Spenner and
Plugge (1979)

Brace and
Theis (1981)

Data Base

Incoherent
scatter, satellites

Incoherent scatter

AE-C

AE-C

AEROS

ISIS 2

ISIS 1

R12"

Tnvaries
with R12

60-120

10-20

20-50

20-40

40-7O

70-110

* R12 is 12-months-running mean solar sunspot number.
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evaluate function (3.36) at the altitudes AHHj, we find

Te(AHHj) - ATEj = DSSj = (STj+ I - STj) DTEj In(2) (3.37)

DSSj describes the difference between the skeleton profile and the

smoothed function at AHHj. The ATEj values are, however, well defined

temperatures, which should be on the final profile. This can be

accomplished to a good degree by introducing new temperatures

ATEj (1) = ATEj- DSSj (3.38}

and using these as the anchor points for the skeleton profile.

Table 8 lists also the source models used to obtain the temperature values

ATEj and the data base behind these models. Brace and Theis (1981) apply

spherical harmonics analysis to describe their AE-C and ISIS satellite data in

terms of magnetic dip latitude (Equation [3.11]) and local time. Sets of 81

coefficients are provided for equinox and solstice at 300 km, 400 km, 1400

km, and 3000 km. The model by Spenner and Plugge (1979) is based on

AEROS satellite data and describes variations with geomagnetic latitude,

longitude, and altitude. Two sets of coefficients are given, one for 3 a.m.

local time and one for 3 p.m. (both for winter). Omitting the small

longitudinal variation, Bilitza (198 lb) obtained the following approximate
expressions.

_2900-5600 EPS1 (¢; 0, 11.35)
TEsp (600 km, ¢)/K = [EPSTEP (I ¢ I; 839, 2000, 45, 5)

(3.39}

at 3 p.m.}at 3 a.m.

¢ is the geomagnetic latitude in degrees. Local time variations are

described with the day-night transition function explained in section
3.1.2.3, page 48 {Equation [3.6]}.

During daytime at low latitudes, the temperature profile frequently exhibits

a local maximum at about 270 kin. The height hm and temperature TErn of
this feature were obtained from incoherent scatter measurements.

hm/km = 210 + 60 exp (- (_/22.4) 2)

TEm/K = 1500 + 800 exp (- (¢/33) 2)

(3.40a)

(3.40b)

During nighttime TErn is set equal to the neutral temperature at hm = 150 km.

The IRI model has been compared with a large number of rocket, satellite,

and incohereht scatter radar measurements. In general good agreement

was found; discrepancies are mostly due to the insufficient description of
changes with season and solar activity (Bilitza and Hoegy, 1990; Buonsanto,
1989).
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IRI offers a second option for the determination of the temperatures ATE2,

ATE3, and ATE4. They can be calculated with a model that makes use of the

strong anti-correlation between electron temperature and density in the

daytime ionosphere (Brace and Theis, 1978; Bilitza et al., 1985). In this
case, users have to provide the electron density at the heights at which they

choose to use this option (AHHI, AHH2, and/or AHH3). The model by Brace

and Theis (1978) describes the electron temperature in terms of electron

density and altitude. It was extended by Bilitza et al. (1985) to include solar

activity variations.

3.3.2 Ion Temperature

Similar to the electron temperature, the ion temperature profile is

represented by a Booker-function

Ti(h) = ATIo + B(h; XSMo, 3, STI, XSM, DTI')
(3.41a)

with the gradients

STIj = (ATIj- ATIj_I)/(XSMj- XSMj-I) (3.41b)

the section boundaries XSMj, the ion temperatures at these boundaries ATIj,

and the transition thicknesses DTIj (see Table 9).

Table 9: Ion Temperature Parameters

X S MI/k m

HS

430

HTT

AHHs*

AHHs*

A TII

Tn(HS)

T/M

Te(HTf)

A TE5*

ATE6*

DTIi

10

10

2O

* If HTT> AHHs, then XSM3 = AHH6and ATI3= ATEs. (AHHland ATEjare electron temperature parameters defined

in section 3.311, page 65, and Table 8.)

Incoherent scatter observations of ion temperature show a distinct change

in gradient at about 430 km. Using AEROS satellite measurements the
latitudinal variation of ion temperature at this point has been described as

(Bilitza, 198 lb)
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_1240 - 1400 EPS1 (¢; 0, 11.11)
TIM = [1200 300 cos_2Z

day I
nightJ (3.42a)

with the geomagnetic latitude ¢ (in degrees) and

Z = 0.47 I¢ I + 0.024 ¢2 (3.42b)

The height HS is found as the point on the neutral temperature profile,
whose tangent meets the point (XSMI/TIM). Below HS, Ti = Tn is assumed.

HTT is the height at which the ion temperature profile meets the electron

temperature profile, assuming a constant ion temperature gradient STI2
above XSMI. STI2 is chosen as

STI2 = night {3.43)

based on incoherent scatter data. Above HTT, Ti = Te is assumed.

Comparisons with incoherent scatter data and with satellite measurements

have indicated the need for a closer coupling between ion and neutral

temperature at intermediate altitudes (Bilitza and Hoegy, 1990). See also
Buonsanto (1989).
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3.4 Ion Composition

IRI describes the relative percentage ion densities (ion composition) Rion(h);

thus, the absolute ion densities are given by

Nion(h) = Ne(h) R4on(h) (3.44)

The model describes the percentage of O + and 02 + ions and fills up to 100%
with light ions in the topside and with NO + ions at lower altitudes. A tenth

of the light ions is assumed to be He +, the rest H ÷.

Booker's (1977) approach is used to represent the O ÷ and 02 + profiles (see

section 3.1.2.1, page 46). For 0 ÷ ions the profile function reads (see
Equation [3.3])

RO{h) = ROo • exp( B{h; HOo, 4, MO, HO, DO) ) (3.45)

with the thicknesses DOj = 9, 5, 5, 50 km forj = I, 2, 3, 4. At low altitudes

the gradients M01, M02 and the transition heights H01, H02 were obtained

from the compilation of rocket data (ion mass spectrometer) by Danilov and

Semenov (1978). The variation of these parameters with solar zenith angle

:t was approximated by the step function (3.2)

M01, M02, H01 = EPSTEP (z; A, B, Zs, dz) (3.46)

where z = cos :t. Because of the limitations of the data base the model is

restricted to sunlit hours. In IRI, z is set equal to 0 for :t greater than 90 °.

Parameters A, B, Zs, and dz vary with season and solar activity as shown in

Table 10. The topside part of the 0 ÷ profile is yet relying on a very small

data base of satellite data (AEROS, OGO 6; retarding potential analyzer). It
distinguishes only day and night conditions and two latitude classes as listed
in Table 11.

Only two Epstein functions are needed to represent the 02 + profile.

RO2(h) = R02o, exp( B(h; H02o, 2, M02, H02, DO2)) (3.47)

with the transition thicknesses D02_ = 5 km and D022 = 5 km and the

gradients and transition heights as listed in Table 12.

The following adjustments are made automatically during the program
execution:

(1) The height HO3 is found where the upper O ÷ skeleton profile (defined

by the point (H05/1%), the transition height H04, and the gradients
M04, M05) reaches 100%.

H03 = H04 + (In(100) - M05 (H04 - HO5))/MO4 (3.48)
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Table 10: Parameters for the Lower Part of the IRI O÷ Model

A
M01 B

%/km zs
dz

A
M02 B

%/km zs
dz

II Winter I Summer II EquinoxCOV<100 I COV>100 COV<100

0.13027 0.161 0.092 0.088
0.08018 0.069 0.072 0.091
0.25 0.18 0.21 0.34

0.04216 0.254 0.014 0.008

0.00999 0.0216 0.03863 0.0195
-0.00686 0.0161 0.01389 0.0067
0.1 0.1 0.12 0.1
5.113 0.03014 0.05762 0.04

COV • 100

0.102
0.083
0.03

0.045

0.01
0.00127
0.09
0.05

A 180

Ho, B 17o
km zs 0.15

dz 0.1175

II 290
HO_km

167 168 172 185
152 165 158 167
0.17 0.258 0.24 0.18
0.04916 0.008 0.01 0.015

290 1237 U
II < +HO, )/2

290

ROol°/o !1 lOO

Table 11: Parameters for the Topside Part of the IRI O÷ Model

HO41km
HOs*lkm
MO_/% km "1

MO41%km "1

MOsl%k m" 1

ILatltude]<30
II Day Niqht

695 570
2177 1040

0

-0.000781 -0.002

0.00264 -0.0052

ILatltudel>_30
Day
695

3367

-0.000786

-0.00165

Night
575

1380

-0.00126

-0.00524

* HOsis the height at whichthe percentage of O+ ions has decreasedto 1%.

(2}

H03 has to be above H02 (see Table i0), which is the height at which

the lower 0 ÷ skeleton profile reaches 100%. If H03 is below H02, then

the gradient M04 is successively decreased by 0.001 km-1 until H03 IS

above 1-102.

Using the reference point HO2o//R02o and the gradients M02 from
Table 12, a new reference point is determined at the height (H022 +

H023)/2 and used in Formula (3.47), thus making sure that the

reference (anchor) point for the 02 + profile is not located in one of the

transition regions (see section 3.1.2.1, page 46).
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Table 12: Parameters for IRI O; Model

Winter ___ Summer Equinox
COV < --,00 COV > 100

H02 t

 lallkm b

M021

%/km

"°" I a II%/km b

HO2#km II
R02o/% I

3° ! 3o 13oII 25-9 -10 -10 0 0

II o 1 Oo
0.02994110.05922 0.05107 0.0307 0.02806

-0.04879 _ -0.07983 -0.07964 -0.04968 -0.04716

-0.01396 11-0.00397 0.00097 -0.00248 -0.00066

0.00089 n 0.00085 -0.01118 -0.02451 -0.02763

-0,099291°0.00313 -0,026141-0.00313 -0.022470.05589 0 -0.09537 0 -0.01919

140 180 140 II 14o 140

45 31 30 U 37 37

HOal Scos
Note: MO2J" =a+bz z= i. 0 for _ > 90

is solar zenithangle.

(3) The height HOmax is determined where the O+ profile function (3.45}

reaches its maximum ROmo.x. If ROmax is greater than 100%, then ROo

is reduced successively by 0.01%, until ROmax is less or equal to 100%.

If at this altitude the percentage of 02 + ions (Function [3.47]) is larger

than 100 - ROmax, then the gradient M023 is decreased successively by

0.02 km -I, until the sum of O + and O2+ percentages is less than 100%.

(4) At the height HOmax the ratio

r = (I00 - ROmo.x- RO2[HOmo.x)]IRO2(HOmox) (3.49)

is determined and is used to calculate the percentage of NO + above

HOmax. Herewith, interference between the molecular ion profiles and

the light ion profiles is avoided.

Finally, the percentages of NO +, H*, and He + ions are determined:

]i00 - RO(h) - RO2{h) h< HOmax

RNO(h) = [r RO2(h) h > HOmox
(3.50]

RH(h) = I(lO0 - RO(h) - RO2(h) - RNO(h)]/(1 - P) h> HOm_
h < HOmox[u (3.51)

RHE(h) = RH(h) P/(1 - P) (3.52)
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P = 0.1 is the ratio of He + ions to the sum of all light ions (H + and He+).

Comparisons with incoherent scatter data (Bilitza, 1984) with OGO 6 data
(Kutiev et al., 1984a, b) and with ISS-b data (Goel and Rao, 1984) showed
that IRI overestimates the percentage of light ions in the topside

ionosphere. Discrepancies were also found at low altitudes in comparison
with $3-1 satellite data (Philbrick and Bhavnani, 1983; Philbrick et al.,

1984) and in comparisons with equatorial rocket data (Sridharan et al.,

1985). A review of empirical ion composition modeling and of possible

improvements of IRI was given by Bflitza (1990).

An alternative model was proposed by Danflov and Yaichnikov (1985). It
describes the relative densities of O ÷, H ÷, He ÷, NO ÷, O2 ÷, N ÷, and Cluster ions

in the altitude range from 75 km to 1000 km, taking into account variation
with solar zenith angle, latitude, season, and solar activity. It is based on a

compilation of satellite (Electron 2, 4, $3-1) and (high apogee) rocket data.
IRI-90 offers this model as a second choice for the computation of the

ionospheric ion composition. A listing of the computer code follows below.
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subroutine ioncom(h,z,f,fs,t,cn)
C ......

c ion composition model

c A.D. Danilov and A.P. Yaichnikov, A New Model of the Ion

c Composition at 75 to lO00 km for IRI, Adv. Space Res. 5,
c 75-79, 107-108, 1985
c

c h altitude in km

c z solar zenith angle in radians
c f latitude in radians

c fs lO.7cm solar radio fl_x

c t season (month)

c cn(1) O+ relative density in percent

c cn(2) H+ relative density in percent

c cn(3) N+ relative density in percent

c cn(4) He+ relative density in percent

c cn(5) NO+ relative density in percent

c cn(6) 02÷ relative density in percent

c cn(7) cluster ions relative density in percent
C .................

c

dimension
k

#7,

cn (7), cm (7), hm (7), alh (7), all (7), beth (7),
betl (7),p(S,6,7),var (6),po(S,6),ph(5,6),

pn (5,6),phe (5,6),pno(5,6),po2(S,6),pcl(5,6)

data po/4*O.,98.5,4*O.,320.,4*O.,-2.59E-4,2.79E-4,-3.33E-3,
k -3.52E-3,-5.16E-3,-2.47E-2,4*O.,-2.SE-8,1.O4E-3,

-I.79E-4,-4.29E-S,I.OIE-5,-I.27E-3/
data ph/-4.97E-7,-I.21E-I,-I.31E-I,0.,98.1,355.,-191.,

-127.,O.,2040.,4*O.,-4.79E-6,-2.E-4,S.67E-4,
k 2.6E-4,0.,-S.OSE-3,10,O./

data pn/7.6E-1,-5.62,-4.99,0.,5.79,83.,-369.,-324.,O.,593.,
4*O.,-6.3E-5,-6.74E-3,-7.93E-3,-4.65E-3,0.,-3.26E-3,

k 4*O.,-1.17E-5,4.88E-3,-1.31E-3,-7.03E-4,0.,-2.38E-3/
data phe/-8.95E-1,6.1,5.39,0.,8.01,4.0.,1200.,4,0.,-1.O4E_5,

k 1.gE-3,9.53E-4,1.O6E-3,0.,-3.44E-3,10,O./
data pno/-22.4,17.7,-13.4,-4.88,62.3,32.7,0.,19.8,2.07,115.,

5*O.,3.g4E-3,0.,2.48E-3,2.15E-4,8.67E-3,5.0.,
-8.4E-3,0.,-3.64E-3,2.E-3,-2.SgE-2/

data po2/8.,-12.2,9.9,5.8,53.4,-25.2,0.,-28.5,-6.72,120.,
5*O.,-l.4E-2,0.,-9.3E-3,3.3E-3,2.SE-2,5.0.,4.25E-3,

k O.,-6.04E-3,3.gSE-3,-3.64E-2/

data pcl/4*O.,100.,4*O.,75.,lO,O.,4.0.,-9.04E-3,-7.28E-3,
& 2*O.,3.46E-3,-2.11E-2/

DO 8 I=1,5
DO 8 J=l ,6

p(i,j ,1)=po(i,j)
p(i,j ,2)=ph(i,j)
p(i,j ,3)=pn(i, j)
p(i, j,4)=phe (i,j)

p(i,j ,5)=pno(i, j)

p(i,j ,6)=po2(i, j)

p (i, j, 7) =pcl (i, j)
continue

s=O.
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1

2

3

4

5

6

do 5 i--l,?
do 7 j=l,6

vat(j) = p(l,j,i)*cos(z) + p(2,j,i)-cos(f) +

p(3, j,i)*cos(O.013* (300.-fs)) +
p(4,j,i)*cos(0.52.'(t-6.)) + p(S,j,i)

continue

cm(i) = var(1)
hm(i) = var(2)
all(i) = var(3)
betl (i)= var (4)

alh(i) = var(5)
beth(i)= wr(6)
hx=h-hm(i)
if (hx) 1,2,3

cn(i) = cm(i) * exp( hx * (hx • all(i) + betl(i)) )

goto 4
ca(i) = cm(i)

goto 4
cn(i) = cm(i) * exp( hx _ (hx * alh(i) _ beth(i)) )

continue
if (cn(i) .LT.O.OOb*cm(i)) cn(i)=O,

if(cn(i).GT.cm(i)) cn(i)=cm(i)

s=s*cn (i)
continue

do 6 i=1,7
cn (i) =cn (i)/s*IO0.

return
end
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3.5 Ion Drift

A model of the ionospheric ion drift was developed for IRI-90 by
Kazimirovsky and his colleagues based on ground-based drift measurements.
It provides the horizontal E- and F-region drifts (zonal and meridional) for
different geomagnetic latitudes, local times, seasons, and solar activities.

The model is described in section 2.5, page 41, of this report. A listing of
the computer code and coefficient files follows below. The program and
coefficients may be available in computer-accessible form from the model
authors.
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A Computer Code for Determlnatlon VX, VY

PROGRAM GL38(I_PUT,]JTP_T,FAR1,FAR2);

(* T_ST CALCJLATION OF I_NOSPHERIC ORIFTS GLOBAL MOOEL *)

VAR

TYPE TI= ARRAY (.I,.15.) )F REAL;

r2: ARRAY (.),.I0,0.,23,) OF REAL;

FAR I, FAR2: TEXT;

3FAR : TI;

_X,DY: T@;

I,J,P_A(,REG,} ! INTEGER;

FI,LT,V(,_Y : REAL;

AR = ARRAY (,I.,78,1..15.) OF REAl_;

PROCE_JRE DRIRR( RFGfP : INTEGER; Fir LTT: _EAL; VAR VX_VY : REAL );

(, E.S.KAZI_IROVSKY,E,I,ZH_VTY ANU u.A.CHERNIGOVSKAYA *)

(* _IBERIA_ INSTITJTE OF TERRESIRIAL MAGNETISM, IONOSPHERE AND *)

(* RADIO _vE PR_AGATI3No SIBERIAN DERAPTMENT 3F THE U,_,S,R_ *)

(* ACAdEmY 3F $CIE_CFS_ b6WO3_ IRKUISK 5), P,D,BOX &026,U.S_$,R,*}

(, PROCEDURE CALC_LATE_ ZDN_L Vx AND MERIDIONAL VY *)

(* C)_DNE_rS _F _)RIZDNTAL VEL3CIT_ OF THE IDNDSPHERIC *)

(* IRREGJLARITIES AT THE HEIGHTS DF F- _D F-REGION FOR PERIOD

(* _J_@ER ), GE]_AGNETIC LATITUDE FI(D_GP) AND LOCAL MEAN

(* TIME LTT(HOJR), IN M/SEC.

(*

(* TD CALCJLATE VK A_D VY

*)

*)

*)

*)

*)

(* F_R E-REGI)*N IT IS NECESSARY TU TAKE REG=I *)

(* F_R F-REGI]_ REG=2 *)

(* F_R T4E _LE PFRI]D )F DBSERVATIONS *)

(, (ONLY FOR F-REGTOk) P:I *)

(* F_R _INIEQ(F)R THE *H)LE PERIOU O_ DBSERVATIONS) P=2 *)

(* FOR S)RING(F)R TH_ _H)LE PERIDD OF DBSERVATIONS) P=3 *)

(* FOR SJM_ER(FDR THE _H3L@ PERIOD OF D6SERVATIO_S) P=6 *)

(* F3R AJTU_N(_)R THE _H)LE PERIOu OF 3BSERVATIO_S) P=5 *)

(, FOR wINTER( _ I0.? = _00 ) P=6 *)

(, _3R S)RXNG( F I0.7 = _DO ) P=? *)

(* FDR SJ_E_( r 10,7 = _O0 ) P=B *)

(* F_R AjTU_N( F 10.7 = _00 ) P=e *)

(* F3R *I_TER( F 10.7 = 70 ) P=IO *)

(* F3R S}RING( F I0.7 : ?0 ) P=11 *)

(* F_R SJ_ER( F 10.7 = ?0 ) Pm12 *)

(* _DR AJTU_( _ 10.7 = 70 ) P=13 *)
*)

(*

(* I_ THERE IS ND 3AT_ THE_ VW=VY=qQ?9.Q *)

(, *)

(* _X • O T_ EAST, VY > D r_ NORT_ *)
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BEGI4 (*

RA:=PI
(* C,4

LT : =LT

13:I_ LT>

I_ (FT

K : = (P",

pl : =TR

CASE R

I: IF

2; IF

EN);

I¢ TR

BEG

F

DRIRR *)

112; RAOI=OI/180;
ECKING T_E CONDITIONS

T;

2_ TflEN 3E31_ LT:=LT-24; OOTO 13
>60) DR (FI(IO) THE4 G3T3 11;

UNC(AR(.(,15,));

EG 3F

(PI=O) 3_ ((PI=I) ANO ((LT<8) OR

(Pl=O) 3R ((P1=1) AND ((LT>6) AN_
(* C_SE _E3 *)

JNC(¢I/13)=TqU_C((_I.1)/13+l)
IN (t 1 *)

3R I1:=! r3 ? DO
_EGI4

I2:=(I1-I )*?;

V3:=AR(.<,I2÷I,); VI:=AR(,K,I_+2.

V_:=AR(.<, 12+_,); FI:=AR(,K, I¢+5.

_]:=A_(,(,I2÷?_);
C_SE 11 3,r

I:

2:

EqO

ENO

END (* 1

ELSE

BEGIN (* _ *)

END;

GOr3 12;

11:VX:=9_99,_;

12:

END; (* DRIRR

3F INFUP_ATION

TH_N

vX:=_(LT,VO,VI,V2,V],_I_K2,FS);

vY:=_(LT,VO,VI,V2,VI,FIIF2_F3)

(* C_SF I1 *)

(* 11 *)

*)

CASE _EG 3F

I: IF (P11=3) OR ((p11=1) AN_

THEN GDT] 11;

2: IF (P11=_) OR ((P11=I) AN_

THEN G3I] 11

EflO; (* CASE REG *)

(* _ILLl_3 OF THE _RR_Y F

F3R 11 :=I r3. _ _O

AVAILABILITY *)

END;

(Lr>IB))) THEN GOTO 11;

(LT<18))) THEN GOT3 11

); V2I=AR(,K_ 12÷_,);

); F2t=AP(,K_ I2+6.);

(?LT<E) OR (LT>I8)))

((lT >6) AKD (LT<16)))

.)

BEGI_

I2:=(II-I)-7;

FDR I3::I TO 6 DO

BEGIN

J:=()'I),6_13;

VD:=AR(,J,I2*I,);

V}:=_R(.J,12+_.);

F_:=_q(,J_I2÷?.);

E_D; (* 13 *)

(* THE L_rITUI) INAL I_TERPDLPTI_K

C_SE 11 36

1! VX:=S)F(PIt18, _I*RAD);

EWD (* C_SF 11 *)

END

(* 2 *)

vY: = @999. 9;

,)

VI:=AP(,J,12÷2.); V2:=AR(,Jf 12÷3.);

FI:=AP(,J, I_'5.); P2:=AR(,J,12÷6,);

_(, T}-l,; :=C(LTf VO,V1,V2,VSe FI,F2, F3)

OF VELOCITY *)
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LABEL 11,12,13;

CONST PI=}.I_15_25;

VAR <,_I,II,IZ,IS.,I_J, p11: INTEGER;

LT,RA,R_D,V3,VI,V2,V},,F1,F2'F3;

F: ARRAY (.D.,5,) OF RE_L;

RFAL_

FUNCTIDN SPF( HK, _: REAL ): _EAL;

(, FJNCTIDN C&LCJLATES S}LI_E INTLRPULATION OF *)

(, LArITJDINAL V_RIATI3N *)

LA_EL 1_;

VAR G,3,R,Z : _RRAY (.0,.5.) OF RFAL;

_,K_I,NJ ! _RRAY (.3.,6,) 3F REAL;

A,B : ARR_f (,0.,_,) OF REaL_

I,I) : I_TESER;

XD, (I : RE_L;

_(.3,):=0; _(.5.):=3; 3(,5,):=1i _(.0,):=1;

Z(.O.) : =}*(F(.I.)-F(.O,))IHX;

Z(.S.):z3*(_(._,)-F(,_,))/WX;

_3R I:=1 IO W )]'

BEGIN

G(.I,):=),S; R(.I.):=0.5;
Z(, I.) : =3,(_(. I,)*(F(.I÷I _)'F(. I _ ))/Hx÷

S(.I,),(F(.I.)-F(,I'I.))IHX)

E_O;

_3R I:=_ IO 5 33 Q(,I.):=-2;

<Si(.O.):=O; NJ(,O.)I=O;

F_R I:=] TO 5 )]

KSI(.I÷I.):=R(.I.)I(_(.I,)-K_I(,I,)*G(.I,));

Nj(.I÷I.):=(NU(.I.)*G(.I,)-Z(.I,))I(Q(.I, )'($I('I')*G('I'))

EwO;

_(._,):=0;

FDR I::S {)OWNt] 0 DO _(,I.)::KSI{,I*Io)*_(,I_I,)÷NU(,I÷I,);

BEGI_

A(,I.):=-_*(F(.I.I.)-F(,I,))/HX ÷{_(,l.)÷_(,I+1"));

B(.I.):=-_(,I,)+(F(,I+I,)'_(,I.))/HX'_(,I')

END;

F_R I::_ F3 5 33

BEGI'_

IF (X>=(1)_RAD+HX*I)) AN_ (_¢(IO*RA _÷HX*(I+I))) IHEN

_GIN RI:=X; IO:=I: _OTD 14 E_D;

END;

I_: RD:=RI-_X'I)-I)*RAD;

BpF::F(.IO.),_(.IO.),_O,B(.IO.)/_X*Xa**_*A(,IO,)/(HX*HX)*(O*'}

END; (* S}F *)

FUNCTIgN C(IJ,CD,CI,C2,C},FII,FIZ,FI} : REAL) _ RE_L;

(* _J_CTI_N C_LCUL _TES THE VALJE OF #ELOCITY FOR *)

(* [HE LATITJ)INAL NET )DINTS *)

_EGIN

C::CO+CI*SIN(_JJ÷FII*_AD) ÷c2_SIH(2_PA*JJ÷FI2*RAD)_

Eke; (* C *)
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PROCEDJRE NA_E(REG,_: INTEGER)g

(* PR3CEDJRE _RI_TS THE N&_E_ 3_ THE P_IOD FOR *)

(* DIFFERENI _E3 _NO P *)

VAR II: INTEGER;

BEGI_

CASE REG ]F

1: _RITE(' E REGI3_ ');

_: _RITE(' F REGIO_ ')

EN); (, C_SE RE3 *)

IF (REG=2) AN_ (P=1 ) THEN Ill=O;

IF (REG=I) AN) (}=I ) }R (RE_=2) AND (P=2 ) THEN Ill=l;

IF (REG=I) AND ()=2 ) 3R (RES=_) AND (P=3 ) THEN II;=2;

IF (REG=I) AND (_=3 ) OR (REG=_) ANp {P=4 ) THEN Ill=3;

IF (REG=!) AND (_=_ ) DR (RES=_) AND (R=5 ) THEN III=_;

IF (REG=I) AND ()=5 ) )R (RE_=2) AN_ (_=6 ) THEN II:=5;

IF (REG=I) AN) (}=6 ) DR (REG=_) AND (R=7 ) THEN Ill=6;

IF (REG=I) AN3 ()=? ) 3R (REG=_) AND {P=8 ) THEN II==?;

I= (REG=I) AND ()=8 ) 3R (REG=_) AND (P=O ) THEN II:=8;

I_ (REG=I) AN) ()=9 ) 3R (REG=2) ANp {R=IO) TMEN Ill=9;

IF (REG=I) AN) ()=I0) 3R (RFG=2) AND (P=11) THEN Ill=t0;

IF (REG=I) AN) ()=11) DR (REG=2) AND (R=12) IHE_ Ill=t1;

I_ (REG=I) AND ()=12) 3R (REG=2) AND {P=13} THE_ II:=1_

CASE II 3_

3:_RITELN('

I:_RITEL_{'

5:_RITELN('

5:_RITEL_('

7;_RtTELN('

B:wRITELN('

13:_RITEL_('

11 :_RITEL_('

I_:_RITEL_('

fdE _H3LE )ERI3D 3F _B_ERVAT_3_S');

_I_TER(F3R /HE aH_LE PERIO0 OF 3BSERVArlONS),)I

_)RIK_G(FDR THE _HOLE P_RIOD OF 3BSERVATIONS)');

_J_MER(FDR THE _M3L_ P_RIOD 3F 3BSERVAT[O_S)');

_J:TU_(F3R IHE _HDLE P_RIOD O_ 3B_ERVATIONS)') ;

_I_TER( F 13.7 = 200 )');

_)RIKG( F 13.7 = 200 )');

_J_R( _ 10.? = 200 )');

_J'TIJ_N( F 10,7 = _00 )' );

_I_TER( F 13.1 =

SJ_MFR( F 13._ =

_JTUVN( F 10.7 =

EN) (* CA%E II *)

70 ),);

?u )');

70 )');

?O )');

PRC)CE3JRE TABLE;

(* _R3CEDJ_E PRINTS THF TABLE OF CALCULATED VALJES *)

(* ]F DRIFT VELDCITYFS VX AND VY FOR EVERY *)

(* _3_R FR]M OOLT TILL @}L! &DR LAT{TUUES 5_I0_15, *)

(* ..,,5_ 3EG. *)

VAR l,J: I_TEGE_;

_EGIN (* T_BLE *)

_RITEL_(' Z]NAL VEL']CITY VX {_/_),);

WRITEL_; _RITE(' ');FOR J:=l T) _1 DO _PITE('*_);WRITELN_

WRITE(' FI LT')IFDR J:=1 TD 12 DO _RITE((J-I):?);WRITELN;

W_ITE(' ');F3_ _:=I T] 01 I)3 aRITE('*,);WRITEL_;

F]_ J:=O T3 13 33

BEGI_

_RITE(' ', (53-J.5) 12,' ');

F3R I:=O TD 11 D3 _RITE(DX(.IO-J_ [.) :?:I)_WRITELN

END;

WRITE(' ');FDR J;=l T3 91 D3 aRITt('*');WRIT_LNI
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F3R J:=O TD 13 D)

BESIN
_RITE(_ ,, (_-J.5):2,' r );

FDR I:=12 T3' _5 DO aRITE(DX(,IO-J,I,);?II)|WRITELN

E_D;
wRITE(' ');F3R Jl=! T3 91 DO aRIT_(,*,);WRITELN;WRITELN;

W_ITELN(r _RIDIO_AL VELOCITY VT tM/S)')I

WRITELN; _RITE(' ');FOR J:=l T3 )1 DO aRTTE('*r);WRITELNI

_IT_(' =I Lro);FDR J:=1 T3 12 DO W_ITE((J-I)IT);WRITELNI

WRIT_(' ');F3R JI=1 T3 91 DO aRIT_(_*f)IWRI TELN;

F3R J :=0 TO I_ 33'

BEGI_
_RITE(' ', (53-J*5):ZF' ');

_]R I:=O T), 11 D9 _RITE(_y(.IO-Jr[.):I:I);WRITELN

ENO;

WRITE(' '); _3R J:=1 T3 91 DO aRIT_(,*f);WRITFLNI

WRITE(' _I LT');F3R J:=1 TD 12 DU W_ITF((J÷11):? )I_RITELN;

WRITE(' ');F3R J:=l T] 91 D3 aRIT_(,*')IWRITELNI

F3R J:=O ID 13 _3

BEIIN

_RITE(' ', (_3-J*5):2F' ');

EN!);
W_ITE(' ') ; FDR J :=I T] 91 D3 aRIT_(,*f);wRITELN;WRITEL@

END; (* TABLE *)

VX:=_;VY:=_;

FOR REG:=I TD 2 )]'

BEGIN
FgR I:=I T) I_ OD FDR J:=1 T3 _ _ AR(.J,I.)I=O/

CASE REG OF

I: BEGIN

(, INpJ_T THE INITIAL-D_TA _OR E-REGI3N *)

RESET (EARl);

FOR J:=1 T3 72 )3

BESI_

F_ I:=_ rO 15 03 READ {FARI,B_AR(,I,));

F3R I:=l T3 15 D) AR(.J_I.):=B_AR(.I_)

END

E_O; (* REG_ *)

?: BEGIN
(* IN>J_T THE INITIAL DATA FuR F-REGI3N *)

RESET (_AR2);

FDR J:='1 TO ?B _3

BE_I_

FD'R II:I T3 15 D3 READ {FAR2,BFAR(.I,))|

F}R I:=l TO 15 D) AR(.J_I.):=B_AR(,I_ )

E_D

E_D (* _ES2 *)

END; (* CASE *)

CASE REG OF

I: P_Ax:= I_;

END;
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FOR P::I T3 P_X DO

@EGIW

PASE;

FI::5;

FO_ J::D T3 10 D3
]EGI_

FIx,FI*5;

FOR I:=O TO 23 _0

BESI_

LTI:I;

3RIPP(PEG,_fFI,LT,Vx,vT);

)R(,J,I,):=VX; )Y(,J,I,):=VY

E_) (* ! *)

END; (* J *)

TABLE

END (* P *)

END (* REG *)

END, (e GL3B_gD *)
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F2-peak 215.9 2.830E+11 286.8 1.2,50_11 268.g 5.165E+11 322.6 3.567E+11
F1-peak 176.4 2.330E+11 0.00.O(X)E,+_ 191.3 3.304F,,+11 0.00.O(X)E+(X)

E-F-conn. 157.5 1 .g,39E+11 229.8 g.176E_-lO 167.2 2,560E+11 247.4 2.407E+11
Valley-top 121.5 1.3,32E+11 170.4 1.707E+og 121.5 1.7208+11 170.4 3.0gOE-NDg
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._2-peak 236.g 3.5ggE+ll 308.9 2.407E+11 285.2 7.243E+11 347.0 5,844E+11

Fl-peak 183.2 2.423E+11 0.0 0._ 190.4 3.50gE+11 0.0 O.O00E,+(X)

E-F-conn. 166.4 1.925E+11 239.2 1.094E+II 166.0 2.556E+II 262.7 3.046E+II

Valle:.--top 120.8 1.321.E+11 16g.S 1.707E+Og 120.8 1.706E+II 169.6 3.0_(0+_

Va.11ey-base 114.3 1.262E+11 133.0 3.244E,+08 114.3 1.630B+11 133.0 5.8'71E+C6
F,--peak 105.0 1.321.E+II 105.0 1.707E+(_ 105.0 1.706E,+11 I05.0 3.0gOE+O0

D--point 81.0 5.117E-+08 88.0 4.000E+(_ 81.0 1.311E.+Og 88.0 4.0(X)E+08

Rzl2=lO Rz12=lO0
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N/m-3 h/Jan N/m-3 h/kin N/m-3 h/kin N/m-3

.='2-peak 230.0 3.8L22B+ll 317.3 2.760E,+11 310.9 8.454F,+11 352.6 T.IglE,+I1
Fl-peak 191.7 2.506B+11 0.0 0._ 208.3 3.663_11 0.00.O00E,+O0

F-,-F-conn. 174.7 1.9_,_-Ii 247.9 1.2"2_E.+11 184.1 2.637E+II 261.0 3.032E+II
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E-peak 105.0 1.373E,+11 105.0 1.707E+<_ 105.0 1.772E+11 105.0 ?.OgOF_.,+Og
D-point 81.0 6.214F_P08 88.0 4._ 81.0 1.332E+Og 88.0 4.000E+08
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5.1 INTERNATIONAL REFERENCE IONOSPHERE 1979

K. Rawer, J. V. Lincoln, and R. O. Conkrtght (eds.)
World Data Center A for Solar-Terrestrial Physics, Report UAG-82, 245 pages,

Boulder, Colorado, 1981.

1. Contributed Papers

1.1 Introduction to IRI 1979
K. Rawer

1.2 Electron Density in the D-Region as Given by the International
Reference Ionosphere

D. Bilitza

1.3 Models for Ionospheric Electron and Ion Temperature
D. Bilitza

1.4 D-Region Positive Ion Concentrations

B. S. N. Prasad and S. Mohanty

1.5 Structure and Composition of the Middle Atmosphere Ionized
Component

F. Arnold

1.6 References to Contributed Papers

2. Technical Note Concerning the Main Programs

3. Formulas

4. Examples

4.1
4.2

Tablesq3 hours/3 seasons/2 levels of solar activity/6 locations
Figures--2 hours/2 seasons/2 levels of solar activity/9 latitudes

5. FORTRAN Program

5.1 Subroutine IONDEM
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5.2 Experience With and Proposed Improvements of the
International Reference Ionosphere

K. Rawer and C. M. Mb_nls (eds.)
World Data Center A for Solar-Terrestr/a] Physics, Report UAG-90, 235 pages,

Boulder, Colorado, 1984.

Proceedings of the 1980 11_ Workshop in Budapest (Hungary).

1. Electron Density Profile

1.1 D- and E-Region

1.1.1

1.1.2

1.1.3

D- and Lower E-Region Electron Density
Profiles Compared with LF and MF Absorption Data

W. Singer, J. Taubenheim, and J. Bremer

D- and Lower E-Region Electron Density
Profiles Compared with LF and VLF Reflection Data

Y. V. Ramanamurty

Comparison of Ionospheric Electron Density

Models Using Data from A Mid-Latitude Absorption Path
M. Friedrich and K. M. Torkar

1.2 Bottomside F-Region

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

Critical Comparison of IRI with Information Obtained

from Bottomside Ionograms
T. L. Gulyaeva

Comparison of IRI with Measurement of N(h) Profiles in

the Bottomside Ionosphere

V. M. Sinel'nikov, G. P. L'vova, T. L. Gulyaeva, S. V.
Pakhomov, and A. P. Glotov

Comparison of IRI with Electron Density Profiles Obtained
Below 200 km by Different Methods

Y. K. Chasovitin, A. D. Danilov, S. M. Demykin,

T. L. Gulyaeva, V. I. Ivanov, V. G. Khriukin, A. A. Nikitin,
L. L. Sukhacheva, V. B. Shushkova, and S. P. Tikhomirov

Comparison of IRI-78 with IZMIRAN's Equinoctial Models

7". L. Gulyaeva, A. G. Israetel, 7". Y. Leshchinskaya,
T. N. Soboleva, and E. E. Tzedilina

Bottomside Electron Density Profile Measurement by
Rocket Borne Probes over the Equator

S. P. Gupta

121

PRECEDING PAGE BLANK NOT FIL_JED



1.3 Topside

1.3.1 Rocket and Satellite Measurements Compared with the

IRI-79 Electron Density Profiles
E. Neske, S. Ramakrishnan, and C. Rebstock

1.3.2 Comparison Between Plasma Densities Measured with the
AEROS-B and $3-1 Satellites and the IRI Model

C. R. Philbrick, P. Ldmmerzahl, E. Neske, and A. Dumbs

1.3.3 Comparison of Theoretical Electron Density Profiles at the
Magnetic Equator with IRI Model and Incoherent Scatter
Data

7". Y. Leshchinskaya and A. V. Mikhailov

1.3.4 Intercomparison of Various Measurements of Thermal
Plasma Densities at and Near the Plasmapause

D. V. Williams, M. J. Rycroft, A. J. Smith, V. V. Beznddkh,

K. I. Gringauz, N. C. Maynard, M. J. Morgan, and T. W. Thomas
(This paper was withdrawn by the authors.)

1.3.5 Comparison with IRI of Electron Density and Temperature
at the Magnetic Equator

G. F. Deminova and L. A. Yudovich

1.4 Variability

Variability of the Equatorial F-Region
K. Bibl

Construction of Electron Density Profiles for the Flare-
Disturbed Ionosphere with Data from Doppler Measurements

I. N. Odintsova and V. D. Novikov

2. Plasma Temperatures

2.1 Electron Temperature

2.1.1 Comparisons of ISIS and AE Satellite Measurements of
Electron Temperature with the International Reference

Ionosphere
L. H. Brace and R. F. Theis

2.1.2 Proposal of Improvement of the Electron Temperature
Model in IRI

K. H/rat
2.1.3 Verification of the International Reference Ionosphere on

Electron Temperature Profiles Obtained by Various Methods
Below 200 km

Y. K. Chasovitin and N. M. Klyueva
2.1.4 Electron Temperature Modeling in the F-Region and Topside

of the Ionosphere: A Proposal for Improving the IRI
K. K. Mahajan and V. K. Pandey

122



2.1.5 Estimation of a Model Electron Temperature Distribution
Based on Absorption Measurement

K. B. Seraflmov

2.2 Ion and Electron Temperatures

2.2.1

2.2.2

2.2.3

2.2.4

The Atmospheric Explorer C Ionospheric Temperatures:
Dependence and Representation

D. Bilitza

Comparison of the Ion Density and Temperature Data
Obtained by the RPA on OGO 6 and the IRI Model

7". P. Dachev, N. S. Trendafllov, and D. G. Goshev

Comparison of the IRI with Ion Temperature and Ion

Density as Measured During Very Quiet Geomagnetic
Conditions on Board the Geophysical Rocket Vertical 6

P. Bencze, K. Kovacs, I. Apa'thy, I. Szemerey, V. Afonin,
V. Bezrukih, and N. Shutte

Observation of Ne, Te, and Ti by Incoherent Scatter

Technique During a Period of Low Solar Activity

V. I. Taran, E. V. Rogozhkln, and D. A. Dzyubanov

2.3 Variability

2.3.1

2.3.2

Studies of the Topside Ionosphere Using the Satellite
Interkosmos- 19

Part I - The Ionospheric Satellite Interkosmos-19

M. M. Gogoshev, A. Kiraga, Z. Klos, K. Kubat,

Y. V. Kushnerevsky, V. V. Migulin, K. B. Serafimov,
P. Triska, M. D. Fligel, and J. Smilauer

Part II - First Results of a Statistical Evaluation of Electron

Temperature Measurements on Board the Interkosmos-19
Satellite

J. Smilauer and V. V. Afonin

Extremely High F-Region Electron Temperatures During the
Present Maximum of Solar Cycle No. 21 (extended abstract)

M. Gogoshev, G. Moraitis, 7". Gogosheva, B. Komitov,

B. Taneva-Mendava, T. Markova, I. Mendov, T. Pashova,
K. Kunev, and S. Spasov

3. Ionospheric Structure

3.1 Ionic Composition

3.1.1

3.1.2

Ion Composition in the D- and Lower E-Regions with
Particular Emphasis on Cluster Ions

E. Kopp

A Proposed Improvement of IRI Using the 0 ÷ - H ÷
Transition Level

I. Kutiev, K. Seraflcrwv, M. Karadimov, and K. Heelis

123



3.2

3.3

3.1.3

3.1.4

3.1.5

Comparison of IRI with Vertical Profiles for Ion and
Electron Density and Electron Temperature Deduced on
Board Vertical Rockets

K. Serafln'wv, I. Kutiev, L. Bankov, N. Bankov, "I".Dachev,
B. Ktrov, and D. Teodosiev

Empirical F-Regions Model Development Based on $3-1
Satellite Measurement

C. R. Philbrlck

Temperature Control of Cluster Ion Concentration
M. Dymek

Planetary Distribution

3.2.1 Proposal for Mapping the Spectral Components of f oF2
A. K. Paul

3.2.2 Comparison of the IRI Model and the Real Planetary
Distribution of F2-Ionospheric Layer Charged Particles

Based on Satellite Measurement Data
I. B. Balev, A. A. Goldin, E. G. Greenwald, V. A. Pavlenko,

A. I. Savin, V. L. Talrose

3.2.3 Upper Atmosphere Dynamics and the International
Reference Ionosphere

E. S. Kaztmirovsky

Present and Future IRI

Limitations of the IRI-78 Models
S. Ramakrishnan, D. Bilitza, and H. Thiemann

Summary and Conclusions Concerning IRI
K. Rawer

4. References

124



5.3 The Upper Atmospheres of the Earth and Planets

C. A. Barth, D. Offermann, K. Labitzke, J. L Vette, K. Rawer, H. A. Taylor (eds.)
Advances in Space Research, Volume 2, Number 10, 183-260, 1982.

Proceedings of the 1982 IRI Workshop in Ottawa (Canada).

Section 1 _ ELECTRON DENSITY PROFILES

Replacement of the Present Sub-Peak Plasma Density Profile by a Unique
Expression

K. Rawer

Implementation of a New Characteristic Parameter into the IRI Sub-Peak
Electron Density Profile

T. L. Gulyaeva

In Situ Studies of Electron Density During Equatorial Spread-F
S. Prakash, S. Pal, R. Pandey, and B. H. Subbaraya

Equatorial F-Region Ionization Differences Between March and September,
1979

A. DasGupta, D. N. Anderson, and J. A. Klobuchar

Section 2 m THE LOWER IONOSPHERE

D-Region IRI Profiles in Relation to Radio Observations
Y. V. Ramanamurty

Comparison of AI-Absorption Data with Theoretically Computed Values Based
on the International Reference Ionosphere (IRI)

G. Datta, S. N. Pradhan, and K. M. Kotadia

Latitudinal Influences on the Quiet Daytime D-Region
W. Swider

Mesospheric Ionization Over Dip Equator at Sunrise
S. P. Gupta

125



Section 3 -- THE PLASMASPHERE

Characteristics of Low-Latitude Whistlers and Their Relation with foF2 and

Magnetic Activity
B. Zongti, W. Tlngzhu, X. Jisheng, C. Songbo, and L. Batxian

Observations of Whistler-Type Echoes on Signals of a Ground VLF

Transmitter on Board the Interkosmos-19 Satellite
O. A. Molchanov, O. A. Maltseva, E. E. Titova, V. I. Di, F. Jiricek, and

P. Triska

Ducted and Non-Ducted Propagation of Omega Signals Within the

Plasmasphere
F. Jirlcek and P. Triska

Section 4 -- PLASMA TEMPERATURE PROFILES

New Descriptive Temperature Model
D. Bilitza

Relationship Between Electron Density and Electron Temperature as a

Function of Solar Activity

K. K. Mahajan, V. K. Pandey, and V. C. Jain

Section 5- ION COMPOSITION

F-Region Ion Composition Modeling
C. R. Philbrick and K. H. Bhavnani

126



5A Toward an Improved International Reference Ionosphere

K. Rawer, C. M. Minnts, K. B. Seraflmov (eds.)
Advances In Space Research, Volume 4, Number I, I- 171, 1984.

Proceedings of the 1983 IRI Workshop in Stara Zagora (Bulgaria).

Chapter 1 m ELECTRON DENSITY PROFILES

New Description of the Electron Density Profde
K. Rawer

Geometry of the "Exponential" Middle Ionosphere
T. L. Gulyaeva

Prediction of Total Electron Content Using the IRI
L. F. McNamara

Model Representation of Mid-Latitudinal Electron Density by Means of
Interkosmos- 19 Data

N. P. Benkova, N. A. Kochenova, A. D. Legenka, M. N. Fatkullin, and M. D.
Fligel

N(h) Profiles from Ground and Interkosmos-19 Satellite Data
T. Pashova

Observed and Model N(h) Profiles for the Bulgarian Region
T. Pasheva, D. Samardziev, N. P. Benkova, N. A. Kochenova, and J.
Kushnerevskij

Bottomside N(h) Profdes over Vietnam and Their Comparison with IRI
L. Hoang, K. B. Serafimov, I. Kutiev, and M. Karadimov

The State of the Art in D-Region IRI Modeling
K. Rawer and Y. V. Ramanamurty

Improvement of the Solar-Cycle Variation of IRI Lower Ionosphere Models
by Means of Radio Wave Propagation Data

W. Singer, J. Bremer, and J. Taubenheim

Chapter 2 m PLASMA TEMPERATURE PROFILES

Solar Cycle Effects upon the Relationship of Ne and Te in the F-Region
L. H. Brace and R. F. Theis

127



Improved Analytical Representation of Electron Temperature in the IRI
D. Bilitza

Comparison of Various Empirical Models of Electron Temperature with

Experimental Measurements During Low Solar Activity
V. K. Pandey and K. K. Mahajan

Chapter 3 _ ION COMPOSITION

Note on a Discussion About the Ion Composition
C. R. Philbrick and K. Rawer

Comparison Between the IRI Ion Composition and Incoherent Scatter
Measurement and Theoretical Values

D. Bilitza

Ion Composition Behavior in Low and Mid-Latitudes During High Solar

Activity
M. K. Goel and B. C. N. Rao

An Approximation of the Height of the O÷-H ÷ Transition Level for Use in IRI
I. Kutiev, P. Marinov, and K. B. Serafimov

Hybrid Quadri-Ionic Model of the Lower Ionosphere
P. Velinov, N. A. Smirnova, and V. A. VIascov

Chapter 4 _ MISCELLANEOUS

Some Measurement Possibilities for the Improvement of IRI

K. B. Serafunov

The Improvement of IRI Profiles of O2 ÷, NO ÷, and 0 ÷ by means of Airglow

Measurements

K. B. Serafunov

Possibilities for Mutual Comparison of the IRI and the Neutral Atmosphere

Models by Optical Measurements
K. B. Serafimov, T. Gogosheva, and M. Gogoshev

A Plan for Compilation of Experimental Data on Drifts for IRI
E. S. Kazimirovsky and E. I. Zhovty

Highlights of the URSI/COSPAR Workshop on IRI
Y. V. Ramanamurty

Final Summary and Conclusions
K. Rawer

128



5_ Models of the Atmosphere and Ionosphere

K. Rawer. C. M. Minnis, K. S. W. Champion, M. Roemer (eds.)
Advances in Space Research, Volume 5, Number 7, 1-112, 1985.

Proceedings of the 1984 IRI Workshop in Graz (Austria).

Chapter I n THE INTERNATIONAL REFERENCE IONOSPHERE
(Workshop VIII)

Section 1. Electron Density Profiles

New Formulas for the IRI Electron Density Profile in the Topside and
Middle Ionosphere

K. Rawer, D. Bilitza, and T. L. Gulyaeva

Ionospheric Electron Density Profiles at Sunrise-Sunset
T. L. Gulyaeva

An Empirical Model of Electron Density for Low and Middle Latitudes Below
200 km

Y. K. Chasovitin, V. B. Shushkova, P. F. Denisenko, T. N. Sykilinda,
V. V. Sotsky, and N. E. Shejdakov

Comparison of Sub-Peak Electron Density Profiles Deduced from Ionograms
with the International Reference Ionosphere (IRI)

P. Velinov, C. Spasov, P. Marinov, and Y. Tasev

Electron Density Reference Profile in the Lower Ionosphere
Y. V. Ramanamurty and K. Rawer

Structure of the Equatorial Lower Ionosphere from the Thumba Langmuir
Probe Experiments

B. H. Subbaraya, S. Prakash, and S. P. Gupta

Studies of Electron Density Irregularities During Strong Spread-F
S. Prakash and S. Pal

Seasonal Dependence of the Ion Density Irregularities at the Magnetic
Equator from OGO 6 Retarding Potential Analyzer Data

L. Bankov, K. Kanev, A. Vassileva, and P. Marinov

Experimental Determination of the Main F-Layer Parameters on a Global
Scale Using Data from a Remote Optical Probe on Board the Satellite
Interkosmos-Bulgaria- 1300

B. D. Mendeva, M. M. Gogoshev, I. D. Mendev, T. N. Gogosheva, and
K. B. Serafirr_v

129



Section 2. Plasma Temperature Profiles

Modeling of Ionospheric Temperature Profiles
D. Bilitza, L. H. Brace, and R. F. Theis

Verification of the International Reference Ionosphere by Comparison with

Electron Temperature Models and with Experimental Data
Y. K. Chasovitin and N. M. Klyueva

An Empirical Model of Electron Temperature for Low and Middle Latitudes
in the 100-200 km Height Region

Y. K. Chasovitin, N. M. Klyueva, P. F. Denisenko, L. S. Mironova,

V. V. Sotsky, and N. E. Shejdakov

An Experimental and Empirical Model of Electron Temperature for
Altitudes of 500 to 1000 km and for a High Solar Activity Period

J. Smilauer and V. V. Afonin

Section 3. Miscellaneous

A New Model of the Ion Composition at 75 to 1000 km for IRI
A. D. Danilov and A. P. Yaichnikov

The Use of Total Electron Content Measurements to Validate Empirical

Models of the Ionosphere
L. F. McNamara

Recent Considerations Concerning D-Region Collision Frequencies

M. Frtedrich

Modeling of Ionospheric Drifts in View of IRI
E. S. Kazimirovsky, E. I. Zhovty, and M. A. Chernigovskaya

Section 4. Annex: Computer Programs and Tables

Annex 1: Tables to "An Empirical Model ..."
Y. K. Chasovitin, N. M. Klyueva, P. F. Denisenko, L. S. Mironova,

V. V. Sotsky, and N. E. Shejdakov

Annex 2: Tables to "An Experimental and Empirical Model ..."

j. Smilauer and V. V. Afonin .....................

Annex 3: Computer Program to "A New Model ..."
A. D. Danilov and A. P. Yaichnikov

Annex 4: Computer Program to "Modeling of Ionospheric Drifts ..."
E. S. Kazimirovsky, E. I. Zhovty, and M. A. Chernigovskaya

13o



5.6 International Reference Ionosphere--Status 1985/86

K. Rawer and Y. V. Ramanamurty {edsJ
Aduances InSpace Reseoxch,Volume 5,Number 10, 1-131,1985.

Proceedings ofthe 1985 IRIWorkshop In Louvain {Belgium).

The Interest of Information Obtained by Incoherent Scatter Technique
K. Rawer and D. Bilitza

Chapter 1 _ TOPSIDE

Electron Density in the Equatorial Topside
D. Bilitza

Modeling the Plasmasphere for the International Reference Ionosphere
M. J. Rycroft and I. R, Jones

Comparison of Measured and Predicted F2-Peak Altitude
D. Bilitza

Latitudinal Asymmetry in Electron and Ion Density Distribution in Southern
and Northern Hemispheres

K. B. Serafimov, I. S. Kutiev, and T. P, Dachev

On the Relative Abundance of Helium Ions in the Topside Ionosphere
R. Koleva and I. S. Kutiev

Chapter 2 _ MIDDLE IONOSPHERE

Determining Electron Density Profiles for the Middle Ionosphere
K. Rawer

Reliability of Electron Density Profiles
A. K. Paul

Controlling Role of Maximum Usable Frequencies in Ionospheric Informatics
T. L. Gulyaeva

Practical Method for Routine Analysis of the Valley Parameters Between E-
and F-Region of the Ionosphere

K. Bibl and M. CalandreUa

131



Proposal for the Improvement of the Electron Density Profile of the F-

Region
K. B. Serafimov

Refinement in the Diurnal Variation of IRI-79 Electron Density Distribution

Y. V. Ramanamurty

Chapter 3 -- LOWER IONOSPHERE

Input from Station-Oriented Observations and Its Assimilation into the New
Formula for the International Reference Lower Ionosphere (IRLI)

Y. V. Ramanamurty

Report on the Discussions on Modeling the Lower Ionosphere
Y. V. Ramanamurty

Electron Density Models for the Lower Ionosphere
W.C. Bain

Comparison Between D- and Lower E-Region Electron Density Profiles and

IRI-79
G. A. Moraitis

A Note on the Use of Absorption Measurements for Improving the IRI

Electron Density Distribution in the Lower Ionosphere
K. B. Serafimov, M. K. Serafimova, Y. V. Ramanamurty, and K. Rawer

A Study of the Short-Term Variations of foe During a Sudden Magnetically

Disturbed Period
C./_ Barbatsl

A Simplified D-Region Ion Chemistry Scheme and Its Possible Use for IRI

Lower Ionosphere Modeling
J. Taubenheim and B. S. N. Prasad

Normalized Electron Production Rate Profiles as a Result of Penetration of

High-Energy Solar Particles into the Lower Ionosphere
P. I. Velinov and M. Gerdjikova

Chapter 4 -- TEMPERATURES

Implementation of the New Electron Temperature Model in IRI
D. Bilitza

Heat Balance of the Ionosphere: Implications for the International Reference

Ionosphere
D. Bilitza

132



5.7 International Reference Ionosphere--Status 1986/87

K. Rawer and P. A. Bradley (eds.)
Advances in Space Research, Volume 7, Number 6, 1-129, 1987.

Proceedings of the 1986 IRI Workshop in Toulouse (France).

Chapter 1 _ TOPSIDE IONOSPHERE

Progress in Modeling the Ionospheric Peak and Topside Electron Density
D. Bilitza, K. Rawer, S. PaUaschke, C. M. Rush, N. Matuura, and W. R. Hoegy

Chapter 2 _ MIDDLE IONOSPHERE

Joint Analytical Profile of Electron Density Through the Whole Ionosphere
K. Rawer

The Determination of LAY-Parameters for a Given Profile
L. Bossy

Progress in Ionospheric Informatics Based on Electron-Density Profile
Analysis of Ionograms

"1".L. Gulyaeva

An Empirical Model for the Global Distributions of Density, Temperature,
and Effective Collision Frequency of Electrons in the Ionosphere

Y. K. Chasovitin, A. V. Shirochkov, A. S. Besprozvannaya, T. L. Gulyaeva,
P. F. Denisenko, O. A. Armenskaya, S. E. Ivanova, A. I. Kashirin,
N. M. Klyueva, E. A. Koryakina, L. S. Mironova, T. N. Sykilinda,
V. B. Shushkova, V. L Vodolazkin, V. V. Sotsky, and N. E. Sheidakov

Values of hmF2 Deduced from Automatically Scaled Ionograms
L. F. McNamara, B. W. Reinisch, and J. S. Tang

Search for a Thickness Parameter for the Bottomside Ionospheric F-Region
from Incoherent-Scatter Electron-Density Profiles

K. K. Mahajan and R. Koh//

Electron-Density Profiles from I00 to 500 km Altitude During High-Solar
Activity: A Comparison with the IRI

G. Johanning and C. -U. Wagner

An Empirical Model of the F1 Intermediate Layer True-Height Characteristics
M. M. de Gonzdlez and S. Radicella

133



Electron Density Profiles in the Equatorial F-Region During Evening Hours

S. P. Gupta

A Southern Hemisphere Error in the IRI

M. P_r_.s

Chapter 3- LOWER IONOSPHERE

Modeling of the Lower Ionosphere According to the IRI Guidelines

Y. V. RamanamtuTy and K. Rawer

The High-Latitude Lower Ionosphere Observed by EISCAT
S. Ktrkwood and P. N. Collis

Perturbation of Electron Density Profiles in the Lowest D-Region by Forbush-

Decreases
G. Sdtori and J. Bremer

Chapter 4 -- PLASMA TEMPERATURE PROFILES

Description of the Mean Behavior of Ionospheric Plasma Temperatures
D. Bilitza

Ionospheric Electron Temperature at Solar Maximum
L. H. Brace, R. F. Theis, and W. R. Hoegy

Modeled Ionospheric Te Prol'des at Mid-Latitudes for Possible IRI

Application
J. j. Sojka, R. W. Schunk, and M. D. Bowline

Different Data Sources for Improvement of the IRI Vertical Distribution of Te

K. B, Serafimov

The Role of Atomic Oxygen and Molecular Nitrogen in the Relationship

Between Electron Temperature and Electron Density in the Ionosphere

P. J. S. Williams and J. N. Mc19onald

Chapter 5 _ IONIC COMPOSITION AND DRIFTS

Goodness of Approximation of Lower Ionosphere Parameters Given by a
Theoretical Model and by the International Reference Ionosphere (IRI)

V. A. Vlaskov, N. V. Smirnova, O. F. Ogloblina, and P. I. Vellinov

Interim Report on Empirical Modeling of Ionospheric Motions in the Light

of the International Reference Ionosphere

E. S. Kazimirovsky and E. I. Zhovty

134



5.8 Ionospheric Informatics

IC Rawer, T. L, Gulyaet_ and B. W. Relnlsch (eds.)
Advances In Space Research, Volume 8, Number 4, 1-253, 1988.

Proceedings of the 1987 IRI Workshop in Novgorod (USSR).

Preface

Chapter 1 w IONOSPHERIC PHYSICS

Solar and Aeronomical Controlling Parameters Determining the State of the
Ionosphere

G. S. Ivanov-Kholodny and L. A. Antonova

Interplanetary Magnetic Field and Ionospheric F-Region
O. P. Kolomiitsev, M. A. Livshits, T. N. Soboleva, and Y. N. Cherkashin

Relationships Between the Polar Cap Ionosphere, the Interplanetary
Magnetic Field, and the Solar Wind

A. V. Shirochkov and L. N. Makarova

Longitudinal Effects in the Ionosphere During Geomagnetic Storms
N. A. Kilifarska

Chapter 2 _ MEASUREMENT TECHNIQUES

Transionospheric Sounding as a Final Link in the Information System for
Ionospheric Radio Sounding

S. I. Avdyushin, N. P. Danilkin, I. I. Ivanov, Y. V. Kushnerevsky, and
V. V. Migulin

Contribution of Incoherent Scatter Facilities to Ionospheric Informatics
V. I. Taran

Experimental Technique of Lower Ionosphere Electron Density
Measurements by Means of Partial Reflections

W. Singer, J. Priese, and P. Hoffmann

Experimental Technique of an FM-CW Radar System for Observation of
Lower Ionosphere Partial Reflection Drifts

J. Priese and D. Keuer

135



Data Processing in an FM-CW Radar System for Ionospheric Drift

Measurements by Means of Partial Reflections

P. Hoffmann, D. Keuer, W. Singer, and T. Linow

Group Path Measurement Accuracy Achieved by Digital Ionosondes for

Ionospheric Informatics
Y. K. Kalinin, V. E. Kunitsyn, and L. L. Rozhdestvenskaya

Chapter 3 _ REDUCTION OF MEASUREMENTS AND DATA

Hardware and Software for Reconstruction of Electron Density vs. Height

Distribution
I. V. Belinskaya, O. N. Boitman, V. M. Vyborova, V. A. Laptev,

A. A. Potemkin, and V. V. Radtonov

Real Time Electron Density Profiles from Ionograms
B. W. Reintsch, R. R. Gamache, Huang Xueqin, and L. F. McNamara

Computer-Aided Ionogram Reduction: Software Structure
G. M. Eme!janov, I. U. Zukovsky, and N. I. Smirnov

Image Processing Methods Applied to Structural Ionogram Coding
G. M. Eme!janov and I. U. Zukovsky

Electron Density Profile Analysis at Low Latitudes
S. M. RadiceUa and M. Mosert de Gonza/ez

Inversion Techniques for Determining the Electron Density Profile from

Oblique Incidence Ionograms
I. V. Krashenlnnikov and B. E. Liannoy

Spline Approximation of Height vs. Frequency Characteristics Obtained by

Ionospheric Vertical Sounding
A. K. Dudakov, A. V. Lanev, and A. V. Yakovlev

An IRI-Based Improvement of the Electron Density Distribution in the Lower

Ionosphere
K. B. Serafimov

Peculiarities of the Inverse Problems of Vertical Radio Sounding of the

Ionosphere
N. P. Danilldn, P. F. Denisenko, and V. V. Sotsky

The Information Base of High Resolution Signals

S. A. Namazov

136



Chapter 4 m DATA BASES

National Space Science Data Center and World Data Center A for Rockets
and Satellites: Ionospheric Data Holdings and Services

D. Bilitza and J. H. King

Software and Information Provision of WDC B2

K. S. Latyshev, Y. S. Tyupkin, and E. P. Kharin

The IPS-HELGEO Data Base Applied to the Ionosphere
I. Stanlslawska

Direction Finding of Radio Sources in the Ionosphere: Data Bank Structure
and Principle of Resolution

L. B. Volkomirskaya, S. V. Panfilov, and A. E. Reznikov

Chapter 5 m SYSTEM ANALYSIS

A Problem-Oriented Computer System for Ionogram Reduction
G. M. Eme_anov

An Automatically Controlled Data Gathering and Processing System Using an
FM-CW Ionosonde

I. G. Brynko, I. A. Galkin, V. P. Grozov, N. I. Dvinskikh, S. M. Matyushonok,
and V. E. Nosov

An Automated System for the Study of Ionospheric Spatial Structures

I. V. Belinskaya, O. N. Boitman, B. O. Vugmeister, V. M. Vyborova,
V. N. Zakharov, V. A. Laptev, M. S. Mamchenko, A. A. Potemkin, and
V. V. Radionov

System Architecture of Real-Time Ionosphere Data Reduction

A. L. Gavrikov, G. M. Emeljanov, N. V. Kurmishev, and I. A. Shumilov

Data Organization in the Ionosphere Information Processing System
I. U. Zukovsky, E. I. Smirnova, and A. V. Shirochkov

Sounding the Ionosphere in a Global, Ground/Geostationary Network
M. Seraflmova and K. I. Serafut_v

System Approach to the Estimation of the Potentiality of Ionospheric
Information and Architectures of the Polar Regional Data Bank

V. A. Checha

Preparing Ionograms from Archives for N(h) Profile Computation
S. S. Andreev, S. A. Guzeev, and V. E. Kulebin

137



Improving Network Stations for Oblique Incidence Sounding of Ionospheric
Radio Wave Propagation

U. P. Arshba, A. L. Gavrikov, N. V. Kurmlshev, V. I. Zakam_din, and

A. A. Erofeev

Simulation Model of Signals Reflected from the Ionosphere
A. L. Gavrikov, M. A. Gavrikova, and N. V. Kurmishev

Chapter 6- IONOSPHERIC MODELING

Second Generation Ionospheric Models: Present Status and Prospects

V. M. Polyakov

Implementation of Operational V.I. Sounding Data for Updating the

Ionospheric Models
A. I. Agarishev, M. K. Ivelskaya, S. V. Lopatktn, V. I. Sazin, and

V. E. Sukhodolskaya

Global Ionospheric and Solar Wind Interactions Through Low Latitude

Geomagnetic Studies
R. G. Rastogl

Analytical Extrapolation as a Way to Expand Informational Basis in

Ionospheric Simulation
N. P. Danilkin, G. S. Ivanov-Kholodny, Y. K. Kalinin, and

L. L. Rozhdestvenskaya

Use of Orthogonal Polynomials for Correlating F-Region Parameters with

Sunspot Numbers for Prediction Purposes
U. C. Upreti, S. Aggarwal, M. M. Gupta, and B. M. Reddy

An Empirical Model of Ionospheric F1-Layer Parameters
M. Y. Buzunova, V. E. Sukhodolskaya, and M. K. Ivelskaya

A Mid-Latitude Study of the F-Region Large Scale Structural Inhomogeneity

Called "G-Condition"
E. P. Datsko, O. Io Maksimenko, and V. I. Moskalyuk

Expansion of Ionospheric Characteristics Fields in Empirical Orthogonal
Functions

N. I. Dvinskikh

m_

Chapter 7- INTERNATIONAL REFERENCE IONOSPHERE

Synthesis of Ionospheric Electron Density Profiles with Epstein Functions
K. Rawer

138



LAY-Functions for F2 Profiles
L. Bossy, R. R. Gamache, and B. W. Reinisch

Comparison of the Results of an Ionospheric Model with Real Time

Digisonde 256 Profiles Automatically Deduced by Computer (ARTIST)
J. C. Jodogne

Evaluation of the International Reference Ionosphere with the Large AE-C
and DE 2 Data Bases

D. Bilitza, W. R. Hoegy, L. H. Brace, and R. F. Theis

Standard N(h) Profiles in the Sub-Peak F-Region from Ground-Based
Sounding of the Ionosphere

A. S. Besprozvannaja, B. D. Bolotinskaja, 7". L. Gulyaeva, and
R. Hanbaba

Ionospheric Informatics with Special Reference to the IRI Modeling Effort
Y. V. Ramanamurty and N. K. Sethi

Comparison with the IRI of Measured Mid-Latitude Diurnal, Seasonal, and

Solar-Cycle Variations of Middle Ionosphere Electron Density Profiles
W. Singer and J. Weiss

Relations Between Classical and Sen-Wyller Magneto-ionic Theories in View

of Their Application at Checking of IRI Electron Density Models
J. Bremer and W. Singer

A Comparison of the Variations in Electron Content Data Observed at Alma
Ata and the IRI

D. Z. Taipov and B. V. Troitsky

Electron Concentration Profiles from the Ionospheric Nightglow as a New
Source of Information to the International Reference Model IRI

G. S. Ivanov-Kholodny, 7". L. Gulyaeva, and I. A. Nesmjanovich

Empirical Transition Heights of Cluster Ions
M. Friedrich and K. M. Torkar

A Reference Model of Horizontal Drifts in the E- and F-Regions

E. S. Kazimirovsky, E. I. Zhovty, and M. A. Chernigovskaya

Chapter 8 w ANNEX: MATHEMATICAL APPENDICES AND TABLES

Annex 1: Formulas to "Synthesis of Ionospheric ..."
K. Rawer

139



Annex 2: Formulas to "Use of Orthogonal Polynomials ..."

U. C. Upreti, S. Aggarwal, M. M. Gupta, and B. M. Reddy

Annex 3: Table to "Expansion of Ionospheric Characteristics ..."
N. I. Dvinskikh

Annex 4: Table of Incoherent Scatter Facilities

V. I. Taran

140



5.9 Ionospheric Informatics and Empirical Modeling

Advances (n Space Research, Volume 10, Number 8. 1-133, 1990.
Proceedings of the 1988 IRI Workshop In Espoo (Finland).

Preface

Chapter 1 i PLASMA DENSITIES

International Reference Ionosphere I Plasma Densities: Status 1988
K. Rawer and D. Bilitza

A Unique Expression for the Electron Density Profile Below the F2-Peak
Y. V. Ramanamurty and K. Rawer

Information About the E-Region Valley from Incoherent Scatter
Measurements

K. K. Mahajan, R. Kohli, V. K. Pandey, and N. K. Sethi

Aeronomical Calculations of Valley Size in the Ionosphere
J. E. TItheridge

Ionospheric Characteristics for IRI in Real Time
B. W. Reinisch, R. R. Gamache, and L. G. Bossy

A New Method of Standardizing Langmuir-Probe Data
Y. V. Ramanamurty and K. Rawer

Rocket-Borne Electron-Density Measurements up to 300 km by Day over
India

S. P. Gupta and H. Thiemann

Rocket-Borne Measurements of Equatorial Ionospheric Electron Densities
and Their Comparison with IRI-10 Predictions

M. A. Abdu, P. Muralikrishna, E. R. De Paula, and I. J. Kantor

141



Chapter 2 _ MAPPING

Mapping the Critical Frequency of the F2-Layer: Part I -- Requirements and

Developments to Around 1980

P. A. Bradley

Longitude Features Shown by Topside Sounder Data and Their Importance

in Ionospheric Mapping
N. P. Benkova, M. G. Deminov, A. 7". Karpachev, N. A. Kochenova, Y. V.

Kusnerevsky, V. V. Migulin, S. A. Pulinets, and M. D. FIigel

Longitudinal Variations of the Day-Time Equatorial Ionosphere Inferred from

Interkosmos- 19 Data

N. A. Kochenova

Ionospheric Mapping Using Satellite Data of Natural HF Noise
S. A. Pulinets, A. Kiraga, and Z. Klos

Atmospheric Gravity Waves and Ionospheric Modeling
L. R. Cander, P. Dominici, and B. Zolesi

Chapter 3 _ PLASMA TEMPERATURES

Solar Activity Variation of Ionospheric Plasma Temperatures
D. Bilitza and W. R. Hoegy

Comparison of Ionospheric Electron Temperature Rocket Measurements
over Natal, Brazil, with the IRI Model

I. J. Kantor, P. Muralikrishna, and M. A. Abdu

Chapter 4 -- IONIC COMPOSITION AND DRIFTS

Variations of Helium Ion Density from Theoretical Considerations

R. Koleva and I. Kutiev

Neutral Winds Derived from IRI Parameters and from the HWM87 Wind

Model for the SUNDIAL Campaign of September 1986

K. L. Miller, A. E. Hedin, P. J. Wilkinson, D. G. Torr, and P. G. Richards

Chapter 5 m APPLICATIONS OF IRI

Ionospheric and Tropospheric Path Delay Obtained from GPS Integrated
Phase, Incoherent Scatter and Refractometer Data and from IRI-86

A. J. Coster, M. Buonsanto, E. M. Gaposchkin, D. Tetenbaum, and L. E.

Thornton

z_

142



Chapter 6 _ DATA HANDLING

Structure and Information Flows in the Distributed Solar-Terrestrial Physics
Data Base System

C. C. Abston, N. E. Papitashvili, and V. O. Papitashvili

Chapter 7 m URSI WORKING GROUP G-4 ON IONOSPHERIC

INFORMATICS

Chairman's Report

N(h) Profile Data at World Data Centers

J. H. Allen, R. Conkright, D. Bilitza, A. Y. Feldstein, and D. M. Willis

Discussion of the Valley Problem in N(h) Analysis of Ionograms
T. L. Gulyaeva, J. E. Titheridge, and K. Rawer

Digital Ionogram Data
B. W. Reinisch, A. Y. Feldstein, and H. Sizun

Oblique Propagation Studies

P. A. Bradley

143





5.10 Development of IRI-90

K. Rau_ and W. R. P_gott (edsJ
Advances in Space Research. Volume 10. Number 11. 1990.

Proceedings of the 1989 IRIWorkshop in Abingdon (United Kingdom).

Chapter 1 -- VERTICAL PROFILES

Progress Report on IRI Status
D. Bilttza

New Options for IRI Electron Density in the Middle Ionosphere
D. Bilitza and K. Rawer

On a Characteristic Point at the Base of the F2-Layer
M. Mosert de Gonzales and S. M. Radicella

An Analytical Model of the Electron Density Profile in the Ionosphere
G. Di Giovanni and S. M. RadiceUa

Spatial and Temporal Variability of the Ionosphere During Solar Minima
T. L. Gulyaeva, M. Mosert de Gonzales, S. M. Radicella, and B. Zolesi

Temporal Variation of Median foEs
G. A. Moraitis

Global Models of Ne and Te at Solar Maximum Based on DE 2 Measurements
L. H. Brace and R. F. Theis

Empirical Modeling of Ion Composition in the Middle and Topside
Ionosphere

D. Bilitza

Chapter 2 m WORLDWIDE AND REGIONAL MAPPING

Application of the Expansion into Empirical Orth0gonal Functions to
Ionospheric Characteristics

W. Singer and J. Taubenheim

Discussion of a New Method for Mapping Ionospheric Characteristics
L. Bossy and K. Rawer

Proposed Improvement of the IRI Topside Profile Formula
K. Rawer

145

PRECEDING PAGE BLANK NOT t'ILMED



Comparison of Topside Electron Density Profiles in the Subauroral

Ionosphere with IRI and SMI-85 Models
N. P. Benkova, M. D. Fligel, P. V. Kishcha, N. A. Kochenova, E. F. Kozlov, Y.

V. Kushnerevsky, N. I. Samorokin, A. S. Besprozvannaya, and T. I. Shchuka

Solar Cycle Variations in F-Region Te in the Vicinity of the Midlatitude

Trough Based on AE-C Measurements at Solar Minimum and DE 2
Measurements at Solar Maximum

L. H. Brace

Geomagnetic Control of the Ionospheric E-Region at Three Different
Latitudes in the European-African Sector

K. K. Barbatsi

OI 630 nm Emission in the Equatorial Ionosphere from INTERCOSMOS -

BULGARIA- 1300 Data
I. N. Kostadinov, P. V. Stoeva, and V. H. Guineva

Chapter 3 _ OUTLOOK

Towards an Expert System on Ionospheric Informatics

T. I_ Gulyaeva

Annex: Tables to "Spatial and Temporal Variability..,"

T. L. Gulyaeva et al.

146



Chapter 6

Arnold, F., K. Kissel, D. Krankowsky, H. Wieder, and J. _ringer, Negative
ions in the lower ionosphere, J. Atmos. Terr. Phys. 33, 1169, 1971.

Bilitza, D., Models for the relationship between electron density and
temperature in the upper ionosphere, J. Atmos. Terr. Phys. 37, 1219, 1975.

Bilitza, D., Electron density in the D-region as given by the International
Reference Ionosphere, World Data Center A for Solar-Terrestrial Physics,
Report UAG-82, 7-10, Boulder, 1981a.

Bilitza, D., Models of ionospheric electron and ion temperature, World Data
Center A for Solar-Terrestrial Physics, Report UAG-62, 11-16, Boulder,
1981b.

Bflitza, D., New descriptive temperature model, Adv. Space Res. 2 (10), 237-
245, 1982.

Bilitza, D., Comparison between the IRI ion composition and incoherent
scatter measurements and theoretical values, Adv. Space Res. 4(1), 107-109,
1984.

Bilitza, D., Electron density in the equatorial topside, Adv. Space Res. 5(10),
15-19, 1985a.

Bilitza, D., Implementation of the new electron temperature model in IRI,
Adv. Space Res. 5(10), 117-121, 1985b.

Bflitza, D., Intemational Reference Ionosphere: recent development, Radio
Sc__!. 21, 343-346, 1986.

Bilitza, D., Empirical modeling of ion composition in the middle and topside
ionosphere, Adv, Space RC_., 10 (11), 47-56, 1990.

Bilitza, D., and W. R. Hoegy, Solar acUvity variation of ionospheric plasma
temperatures, Adv. Space Res., 10(8), 81-90, 1990.

147



Bilitza, D., and K. Rawer, New options for IRI electron density in the middle

ionosphere, Adv, Space Res., 10 (11), 7-16, 1990.

Bilitza, D., N. M. Sheikh, and R. Eyfrig, A global model for the height of the

F2-peak using M3000 values from the CCIR, T_l_comm. J. 46, 549-553,

1979.

Bilitza, D., L. H. Brace, and R. F. Theis, Modeling of ionospheric temperature

profiles, Adv, Space Res. 5(7), 53-58, 1985.

Bilitza, D., K. Rawer, S. Pallaschke, C. M. Rush, N. Matuura, and W. R. Hoegy,

Progress in modeling the ionospheric peak and topside electron density,

Adv. Space Res. 7(6), 5-12, 1987.

Bflitza, D., K. Rawer, and S. Pallaschke, Study of ionospheric models for
satellite orbit determination, Radio Sci. 23, 223-232, 1988.

Booker, H. C., Fitting of multi-region ionospheric profiles of electron density

by a single analytic function of height, J, Atmos. Terr, Phys. 39, 619, 1977.

Brace, L. H., and R. F. Theis, An empirical model of the interrelationship of
electron temperature and density in the daytime thermosphere at solar
minimum, Geophys, Rcs. Lett. 5, 275-278, 1978.

Brace, L. H., and R. F. Theis, Global empirical models of ionospheric electron
temperature in the upper F-region and plasmasphere based on in situ
measurements from Atmosphere Explorer C, ISIS 1 and ISIS 2 satellites, J.

Athos. Terr. Phys. 43, 1317-1343, 1981.

Bradley, P. A., Mapping the critical frequency of the F2-1ayer: Part 1-
Requirements and developments to around 1980, Adv, Space Res. 10(8), 47-
56, 1990.

Bradley, P. A., and J. R. Dudeney, Vertical distribution of electron
concentration in the ionosphere, _l, Atmos. Terr. Phys. 35, 2131-2146, 1973.

Briggs, B. H., J. Atmos. Tcrr. Phys. 39, 1023-1033, 1977.

Brinton, H. C., H. G. Mayr, R. A. Pickett, and H. A. Taylor, The effect of
atmospheric winds on the O + - H + transition level, Space Research X, 652-
662, North-Holland Publishing Company, Amsterdam, 1970.

Buonsanto, M. J., Comparison of incoherent scatter observations of electron

density, and electron and ion temperature at Millstone Hill with the
International Reference Ionosphere, _I, Atmos. Terr, Phys. 51, 441-468,
1989.

148



Chiu, Y. T., An improved phenomenological model of ionospheric density, J.
Atmos. Terr, Phys. 37, 1563, 1975.

CCIR, Comit_ Consultatif International des Radiocommunlcations,
and later supplements, Geneva, 1967.

CCIR, Comit_ Consultatif International des Radiocommunications,
and later supplements, Geneva, 1973.

CIRA 1961, North-Holland Publishing Company, Amsterdam, 1961.

CIRA 1965, North-Holland Publishing Company, Amsterdam, 1965.

CIRA 1972, Akademie-Verlag, Berlin, German Democratic Republic, 1972.

CIRA 1986, Adv, Space Res., 8(5-6), 1988, and 10(6), 1990.

Coster, A. J., M. Buonsanto, E. M. Gaposchkin, D. Tetenbaum, and L. E.

Thornton, Ionospheric and tropospheric path delay observations obtained
from GPS integrated phase, incoherent scatter and refractometer data and
from IRI-86, Adv, Space Res. 10(8), 105-108, 1990.

Danflov, A. D., and V. K. Semenov, Relative ion composition model at
midlatitudes, j. Atmos. Terr. Phys. 40, 1093-1102, 1978.

Danflov, A. D., and A. P. Yaichnikov, A new model of the ion composition at
75 to 1000 km for IRI, Adv. Space Res. 5(7), 75-79, 1985.

Demars, H. G., and R. W. Schunk, Temperature anisotropies in the

terrestrial ionosphere and plasmasphere, Rev. GeoDhy_. 25, 1659-1679,1987.

Ducharme, E. D., L. E. Petrie, and R. Eyfrig, A method for predicting the F1-
layer critical frequency, _ 6, 369-378, 1971.

Ducharme, E. D., L. E. Petrie, and R. Eyfrig, A method for predicting the F1-
layer critical frequency based on Zurich smoothed sunspot number,
Scl. 8, 837-839, 1973.

Dumbs, A., G. Emmenegger, R. Kist, D. Klumpar, E. Neske, J. SIavik, K.
Spenner, and H. Wolf, Results from the plasma experiments on AEROS, J.
Geomag. Geoelectr. 31, $125, 1979. I

Feichter, E., R. Leitinger, and G. K. Hartmann, Untersuchungen fiber die

HalbJahres- und die Jahreswelle in F-Schicht-Parametern, Kleinheubache_
Ber. 31, 249-258, 1988.

149



Felchter, E., R. Leltinger, and G. K. Hartmann, ModeU-Parameter ffir den
Elektroneninhalt der Ionosphth'e in mitfleren Breiten, Kl_inheubacher Ber.

32, 623-632, 1989.

Ferguson, B. G., and L. F. McNamara, Calculation of HF absorption using the
International Reference Ionosphere, _I, Atmos. Terr. Phys. 48, 41-49, 1986.

Goel, M. K., and B. C. N. Rao, Ion composition behaviour in low and
midlatitudes during high solar activity, Adv. Space Res. 4(1), 111-118, 1984.

Goel, M. K., B. C. N. Rao, S. Chandra, and E. J. Maier, Satellite measurements

of ion composition and temperatures in the topside ionosphere during
medium solar activity, _I, Atmos, Terr, Phys. 38, 389, 1976.

Gulyaeva, T. L., Progress in ionospheric informatics based on electron
density profile analysis of ionograms, AcJv, Space Res. 7(6), 39-48, 1987.

Gulyaeva, T. L., J. E. Titheridge, and K. Rawer, Discussion of the valley
problem in N(h) analysis of ionograms, Adv. Space Res. I0(8), 123, 1990.

Hirao K., and K. Oyama, An improved type of electron temperature probe, J.

Geomag. Geoelectr. 22, 393-402, 1970.

Johnson, C. Y., Ionospheric composition and density from 90 to 1200
kilometers at solar minimum, _I. Geophys. Res. 71, 330, 1966.

Jones, W. B., and R. M. Gallet, The representation of diurnal and geographic
variations of ionospheric data by numerical methods, Telecomm. J. 29, 129,

1962, and 32, 18, 1965.

Kazimirovsky, E. S., and E. I. Zhovty, A plan for compilation of experimental
data on drifts for IRI, Adv, Space Res. 4(1), 149-151, 1984.

Kazimirovsky, E. S., E. I. Zhovty, and M. A. Chemigovskaya, Modeling of

ionospheric drifts in view of IRI, Adv..Space Res. 5(7), 95-96 and 109-112,
1985.

Kelly, J. D., and V. B. Wickwar, Radar measurements of high-latitude ion
composition between 140 and 300 km altitude, J, Geophys. Res. 82, 7617-
7626, 1981.

Kleiner, B., and T. E. Graedel, Exploratory data analysis in the geophysical

sciences, Rev. Geophys. Space Phys. 18, 699-717, 1980.

Kopp, E., Ion composition in the D- and lower E-regions with particular
emphasis on cluster ions, World Data Center A for Solar-Terrestrial Physics,
Report UAG-90, 140-149, Boulder, 1984.

150



Kopp, E., P. Eberhardt, and U. Iterrman, Summer daytime ion composition
in the D-region above Wallops Island, Space Research XVIII, 245, 1978.

Kouris, S. S., and L. M. Muggleton, Diumal variation in the E-layer ionization,
J. Atm0@. Terr. Phys. 35, 133-139, 1973a.

Kouris, S. S., and L. M. Muggleton, A proposed prediction method for
monthly median foE, contribution No. 6/3/07 to Interim Working Party 6/3,
CCIR Report 252-2, 1973b.

Kutiev, I., K. Seraf'unov, N. Karadimov, and R. Heelis, A proposed
improvement of IRI using the 0 ÷ - H ÷ transition level, World Data Center A
for Solar-Terrestrial Physics, Report UAG-90, 150-154, Boulder, Colorado,
1984a.

Kutiev, I., P. Marinov, and K. B. Seraflmov, An approximation of the height of
the O ÷ - H ÷ transition level for use in IRI, Adv. Space Res. 4(1), 119-121,
1984b.

LathuiUere, C., and A. Brekke, Ion composition in the auroral ionosphere as
observed by EISCAT, Annales Geophysicae 3, 557-568, 1985.

LathuiUere, C., G. Lejeune, and W. Kofman, Direct measurements of ion

composition with EISCAT in the high latitude Fl-region, Radio Sci. 18, 887-
893, 1983.

Leitinger, R., and E. Putz, Die Auswertung yon Differenz-Doppler-Messungen
an den Signalen yon Navigationssatelliten, Technical Report, University of
Graz, 1978.

Leitinger, R., and E. Putz, Ionospheric refraction errors and observables, in:

Atmospheric Effects on Geodetic Space Measurements (F. K. Brunner, ed.),
Monograph 12, School of Surveying, University of New South Wales, 81-102,
1988.

Leitinger, R., G. Schmidt, and A. Tauriainen, An evaluation method

combining the differential Doppler measurements from two stations that

enables the calculation of the electron content of the ionosphere, J,
Geophysics (Zs. Geophysik) 41, 201-213, 1975.

LleweUyn, S. K., and R. B. Bent, Documentation and description of the Bent
ionospheric model, Air Force Geophysics Laboratory, Report AFCRL-TR-7_-
0657, Hanscom AFB, Massachusetts, 1973.

Maeda, K. I., Midlatitude electron density profiles as revealed by rocket
experiments, J. Geomag. Geoelectr. 21, 557, 1969.

Maeda, K. I., Midlatitude electron density profile in the lower solar activity,
J. Geomag. Geoelcctcr. 22, 551, 1970.

151



Maeda, K. I., Study on electron density profile in the lower ionosphere, J.
Geomag. Geoelectr. 23, 133, 1971.

Maeda, K. I., E-region electron density profile, Space Research XII, 1229,
1972.

MahaJan, K. K., and R. Kohli, Search of thickness parameter for the
bottomside ionospheric F-region from incoherent-scatter electron-density

profiles, Adv. Space Res. 7(6), 57-60, 1987.

Mahajan, K. K., R. Kohli, V. K. Pandey, and N. K. Sethi, Information about the
E-region valley from incoherent scatter measurements, Adv. Space Res.
10(8), 17-20, 1990.

McNamara, L. F., Prediction of total electron content using the Intemational
Reference Ionosphere, Adv, Space Res. 4(1), 25-50, 1984.

McNamara, L. F., The use of total electron content measurements to validate

empirical models of the ionosphere, Adv. Space Res. 5(7), 81-90, 1985.

McNamara, L. F., and P. J. Wilkinson, Prediction of total electron content

using the International Reference Ionosphere, J. Atmos. Te.rr, Phys. 45, 169-
174, 1983.

Mechfly, E. A., and D. Bilitza, Models of D-region electron concentrations,
Institut fuer Physikallsche Weltraumforschung, Report IPW-WB1, Freiburg,
Federal Republic of Germany, 1974.

Miyazaki, S., Ion transition height distribution obtained with the satellite
TAIYO, J. Geomaff. Geoelectr. 31, $95-$112, 1979.

Oliver, W. L., Models of Fl-region ion composition variations, J. Atmos. T¢rr,
Ph_h,_. 37, 1065-1076, 1975.

Oyama, K. I., and T. Abe, Anisotropy of electron temperature in the

ionosphere, Geophy_. Res. Lett. 14, 1195-1198, 1987.

Oyama, K. I., K. Hirao, P. M. Banks, and P. R. Williamson, Is Te equal to "In at

the heights of 100 to 120 km?, Planet. Space Sci. 28, 207-211, 1980.

Oyama, K. I., K. Hirao, and F. Yasuhara, Electron temperature probe on board
Japan's 9th scientific satellite OHZORA, J. Geomag. Geoelectr. 37, 413-430,
1985.

Oyinloye, J. 0., Equatorial HF radio wave absorption measurements and the
IRI, J. Atmos. Terr. Phys. 50, 519-522, 1988.

152



Philbrick, C. R., and K. H. Bhavnani, F-region ion composition modeling, Adv.
_,..]_. 2(I0), 253-257, 1983.

Philbrick, C. R., P. _merzahl, E. Neske, and A. Dumbs, Comparison
between plasma densities measured with the AEROS-B and $3-1 satellites

and the !R I model, World Data Center A for Solar-Terrestrlal Physics, Report
UAG-90, 62-67, Boulder, 1984.

Pintado, O. I., S. M. RadiceUa, and P. M. Fem_dez, Experimental estimates
of electron density variations at the reflection height of VLF signals, j.
Atmos. Terr. Phys. 49, 129-133, 1987.

Raitt, W. J., R. W. Schunk, and P. M. Banks, A comparison of the temperature
and density structure in high and low speed thermal proton flows, Planet.
Space Sci. 23, 1103-1117, 1975.

Ramakrishnan, S., and K. Rawer, Model electron density profiles obtained by
empirical procedures, Space Research XII, 1253-1259, Akademie-Verlag,
Berlin, German Democratic Republic, 1972.

Rawer, K., in: Meteorological and Astronomical Influences on Radio Wave
,P_EQP.._,RtJ_2, B. Landmark (ed.), p. 221, Academy Press, New York, 1963.

Rawer, K. (ed.), Methods of Measurements and Results of Lower Ionosphere
Structure, Akademie-Verlag, Berlin, German Democratic Republic, 1974.

Rawer, K., New description of the electron density profile, Adv. Space Rvs.
4(1), 11-15, 1984.

Rawer, K., Determining electron density profiles for the middle ionosphere,
Adv, Space Reg. 5(I0), 43-49, 1986.

Rawer, K., Joint analytical profile of electron density profiles through the
whole ionosphere, Adv. Space Res. 7(6), 25-33, 1987.

Rawer, K., Synthesis of ionospheric electron density profiles with Epstein
functions, Adv. Space R¢s. 8(4), 191-200, 1988.

Rawer, K., and D. Bilitza, Electron density profile description in the
International Reference Ionosphere, J. Armor, Terr, Phys. 51, 781-790,
1989.

Rawer, K., and D. Bflitza, International Reference Ionosphere-plasma
densities: Status 1988, Adv, Space R¢_. 10(8), 5-14, 1990.

Rawer, K., S. Ramakrishnan, and D. Bilitza, Intemational Reference

Ionosphere 1978, International Union of Radio Science, Special Report,
Brussels, Belgium, 1978a.

153



Rawer, K., D. Bilitza, and S. Ramakrishnan, Goals and status of the
International Reference Ionosphere, Rely. Geophys. 16, 177-181, 1978b.

Rawer, K., D. Bilitza, S. Ramakrishnan, and M. N. Sheikh, Intentions and

buildup of the International Reference Ionosphere, in: Operational Modeling
9f the Aerospace Propagation Environment, AGARD-CPP-238, 6.1-6.10,
1978c.

Rawer, K. (chairman), J. V. Lincoln (ed.), R. O. Conkright (ed.), International

Reference Ionosphere-IRI-79, World Data Center A for Solar-Terrestrial

Physics, Report UAG-82, Boulder, 1981.

Rawer, K., D. Bilitza, and T. L. Gulyaeva, New formulas for the IRI electron

density profile in the topside and middle ionosphere, Adv, Space Res. 5(7),

3-12, 1985.

Rush, C. M., M. PoKempner, and D. N. Anderson, F. G. Stewart, and J. Perry,

Improving ionospheric maps using theoretically derived values of f oF2, Radio

Sci. 18, 95-107, 1983.

Rush, C. M., M. PoKempner, D. N. Anderson, J. Perry, F. G. Stewart, and R.
Reasoner, Maps of f oF2 derived from observations and theoretical data,
Radio Sci. 19, 1083-1097, 1984.

Rush, C. M., M. Fox, D. Bilitza, K. Davies, L. McNamara, F. G. Stewart, and M.

PoKempner, Ionospheric mapping--An update of f oF2 coefficients,
_. 56, 179-182, 1989.

Rycroft, M. J., and I. R. Jones, Modeling the plasmasphere for the
International Reference Ionosphere, Adv. Space Res. 5(10), 21, 1985.

Rycroft, M. J., and I. R. Jones, A suggested model for the IRI plasmaspheric
distribution, Adv. Space Res. 7(6), 13-22, 1987.

Serafimov, K. B., M. K. Serafimova, Y. V. Ramanamurty, and K. Rawer, A note
on the use of absorption measurements for improving the IRI electron

density distribution in the lower ionosphere, Adv, Space Res. 5(10), 99-102,
1985.

Shimazaki, T., Worldwide daily variability in the height of the maximum
electron density of the ionospheric F2-1ayer, J. Radio Res. Labs. (Japan) 2,

85-97, 1955.

Singer, W., J. Bremer, and J. Taubenheim, Improvement of the solar-cycle
variation of IRI lower ionosphere models by means of radio wave propagation

data, Adv, Space Res. 4(I), 79-88, 1984.

Skedel, K., Vergleich von Empirischen Parametem der Ionosphth'e mit
Modelldaten der IRI (International Reference Ionosphere), Diplomarbeit

154



(thesis for master's degree), Institut f. Meteorologie u. Geophysik, University
of Graz, 1989.

Soboleva, T. N., Model profiles of the diumal distribution of electron density
of the quiet ionosphere at middle latitudes (Russian), IZMIRAN, Preprint
No. 20, Moscow, 1972.

Soboleva, T. N., Diurnal variations in electron density distribution of the

quiet ionosphere at middle latitudes, Geomagnetism and Aeronomy 13, 790,
1973.

Spenner, K., and R. Plugge, Empirical model of global electron temperature
distribution between 300 and 700 km based on data from AEROS-A, J,

Geophys. 46, 43-56, 1979.

Sridharan, R., R. Raghavaro, A. A. Pokhunkov, and V. A. Varfolomeev, Relative
ion composition variation over the dip equatormA comparison of
measurements with IRI, J. Atmos. Terr. Phys. 47, 1081-1084, 1985.

Suchy, K., and K. Rawer, Improvements in empirical modeling of the world-
wide ionosphere, Air Force Geophysics Laboratory, Report AFGL-TR-67-
0109, Hanscom AFB, Massachusetts, 1986.

Taylor, H. A., Observed solar geomagnetic control of the ionosphere:
Implications for reference ionospheres, Space Research XII, 1275, 1972.

Thomas, L., The neutral and ion chemistry of the upper atmosphere, in:

Encyclopedia of Physics, Volume XLIX/6, Geophysics III/6, K. Rawer (ed.),
Springer-Verlag, Berlin, 1982.

Titheridge, J. E., Determination of ionospheric electron content from the

Faraday rotation of geostationary satellite signals, Planet. Spa¢_ Sci. 20, 353-
369, 1972.

Titheridge, J. E., Ion transition heights from topside electron density

profiles, Planet. Space Sci. 24, 229-245, 1976.

Torr, D. G., and M. R. Torr, Chemistry of the thermosphere and ionosphere,

J, Atmos. Terr. Phys. 41, 797, 1979.

Vergasova, G. V., E. I. Zhovty, and E. S. Kazimirovsky, Planet Space Sci. 26,
387-398, 1979.

Whitehead, J. D., Recent work on midlatitude and equatorial sporadic-E,
Atmos. Terr. Phys. 51, 401-424, 1989.

155




